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ABSTRACT
Urban mobility contributes 40% of CO2 emissions from road trans-
port, which is projected to double by 2050 [6]. Ride-sharing services
like Uber and Lyft have transformed urban mobility by providing
convenient and on-demand personal transportation through smart-
phone applications. However, their success has resulted in an in-
crease in traffic and congestion on roads—a type of rebound effect.
For example, in New York City, ride-sharing accounts for over 50%
of road traffic. Recent studies estimate that a typical ride-sharing
trip is less efficient than a personal car trip, mainly due to “dead-
head” miles traveled by a ride-share vehicle between consecutive
hired rides, resulting in 36-45% higher distance travelled and upto
47% higher CO2 emissions compared to a private car ride [3]. As a
result, there is a need to develop emission-aware ride-assignment
algorithms that reduce emissions from deadhead miles.

Recent work has used theoretical as well as data-driven and
machine learning (ML) approaches to improve the performance
of ride-sharing platforms. For example, Abkarian et al. [1] present
a model that aims to balance the tradeoff between waiting times
and deadhead mileage driven by the vehicles in the fleet. Ke et
al. [4] propose a novel spatio-temporal deep learning approach that
uses a convolutional neural network (CNN) to model the spatial
distribution of demand and a long short-term memory (LSTM)
network to model the temporal patterns in ride demand. While
these studies focus on improving the performance of ride-sharing
services, they do not explicitly target reducing deadhead miles.

The most relevant work to ours targets reducing deadhead miles
for individual trips [5]. Authors combine demand predictions with
a heuristic approach to driver assignment to demonstrate up to 82%
reduction in trip-level deadheadmiles. However, their approachmay
not effectively reduce system-wide deadhead miles and emissions,
which depend on factors like fuel efficiency and traffic conditions.
Furthermore, they neither consider EVs nor do they take equity
into account. Our work takes a holistic approach toward designing
multi-objective ride assignment optimizations, aiming to reduce
emissions from deadhead miles, incorporate equity considerations,
and account for EVs in ride-sharing fleets. In this paper, we present
a preliminary study illustrating the benefits of emission-aware ride
assignment and propose combining data-driven algorithms and
machine learning to enhance online decision-making processes.
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1 MODEL AND FORMULATION
We assume a riding ecosystem with𝑀 = 𝑀𝑒 +𝑀𝑔 cars, where𝑀𝑒 is
the number of EVs, and𝑀𝑔 is the total number of non-electric cars.
There are 𝑁 ride requests that are arriving online over time. The
ride assignment algorithm aims to minimize the overall emissions
by matching ride requests to drivers, considering both passenger
rides and the “deadhead” mileage between consecutive pickups. We
formulate the Emission-aware Ride Assignment (ERA) as follows.

[ERA] min
𝑁∑︁
𝑛=1

𝑀𝑛∑︁
𝑚=1
(𝑒𝑡 (𝑛,𝑚) + 𝑒𝑑 (𝑛,𝑚)) 𝑥𝑛,𝑚

s.t.,
𝑀𝑛∑︁
𝑚=1

𝑥𝑛,𝑚 = 1, 𝑛 ∈ [𝑁 ],

vars., 𝑥𝑛,𝑚 = {0, 1}, 𝑛 ∈ [𝑁 ],𝑚 ∈ [𝑀𝑛],
where𝑀𝑛 denotes the set of available cars 𝑛, 𝑒𝑡 (𝑛,𝑚) is the emis-
sions during the trip due to the assignment of passenger 𝑛 to dri-
ver𝑚 and 𝑒𝑑 (𝑛,𝑚) represents the emissions due to the deadhead
mileage for driver𝑚 to pickup passenger𝑛. The binary optimization
variable 𝑥𝑛,𝑚 = 1 if𝑚 is assigned to 𝑛; 0 otherwise.

We illustrate the benefits of our system-level emissions-aware
deadhead optimization over per-ride optimization approaches (such
as [5]), in Figure 1 (left). We have a driver 𝑀1 who is carrying a
passenger at time 𝑡0 with an expected drop-off time of 𝑡5. At 𝑡3, two
passengers request rides. In a per-ride optimization approach, the
driver 𝑀1 is assigned to passenger 𝑁2, due to its close proximity,
and the passenger 𝑁3 is assigned to the driver 𝑀2, which leads
to total deadhead miles of 61 𝑢𝑛𝑖𝑡𝑠 . However, a system-level view
of the ride assignment will assign driver 𝑀1 to the passenger 𝑁3
and driver𝑀2 to the passenger 𝑁2, despite it not being the optimal
assignment for driver𝑀1. This results in the overall deadhead miles
of 40 𝑢𝑛𝑖𝑡𝑠 , which not only reduces the deadhead miles emissions
but also the waiting time experienced by the passengers.

2 PRELIMINARY RESULTS
To motivate the proposed research, we conducted a preliminary
feasibility study using the RideAustin dataset [7]. The feasibility
study aims to maximize emission reduction potential by offline
passenger reassignment using complete advance trip request infor-
mation. For our offline algorithm design, we leverage the existing
algorithms for multiple traveling salesman problem (MTSP) [2].
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Figure 1: System-level optimization of deadhead miles leads
to lower deadhead miles (40 units) than per-ride optimiza-
tion (61 units) (left). Comparison of deadhead miles emis-
sions and waiting time for the default ride assignment and
emission-aware ride assignment (right).
The problem of finding the best ride for 𝑁 requests and𝑀 drivers
can be mapped to an MTSP with 𝑁 cities and𝑀 salesmen, where
each request and each driver corresponds to a unique city and a
unique salesman, respectively. In addition, the distance between
city 𝑖 to city 𝑗 in MTSP is the distance between the destination
point of the 𝑖th request and the starting point of the 𝑗th request.
We modified the branch-and-cut algorithm, used for solving MTSP,
to incorporate the emission-aware ride assignment constraint that
each driver must visit the requests in a specific order.

The Emission-aware Ride Assignment (ERA) algorithm, shown
in Algorithm 1, calculates the near-minimum cost of assigning a
set of 𝑁 requests to𝑀 drivers. It begins with an empty assignment
for all𝑀 drivers (Line 1) and sequentially processes the requests by
assigning the new request to any possible driver for any candidate
assignments selected for the previous requests (Lines 4-5). Then, it
calculates the estimated cost of the recently generated assignments
and updates the set of candidate assignments by removing assign-
ments with an estimated cost higher than the lowest estimated cost
(Line 6). This algorithm is similar to the brute-force algorithm that
evaluates the cost of every possible assignment, but its pruning
step (Line 6) allows it to calculate the near-minimum cost faster.

Algorithm 1: ERA: Emission-aware Ride Assignment(𝑁 ,𝑀)

1 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡0 = empty assignments to every drivers;
2 A = {𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡0};
3 for 𝑛 ∈ 𝑁 and 𝑎 ∈ A do
4 remove 𝑎 from A;
5 assign 𝑛 to any possible drivers in 𝑎 and add new assignments

to the A;
6 keep the assignments with lowest calculated cost in A and

remove the rest;

Figure 1 (right) presents emissions from the deadhead miles and
passenger waiting times for the current assignments in the dataset
and the new assignments based on ERA Algorithm. For this prelimi-
nary feasibility study, we randomly sampled 142 trips, completed by

14 unique drivers, from the RideAustin dataset [7] on December 2,
2016. The left 𝑦-axis presents the total carbon emissions, measured
in grams of carbon dioxide equivalent (gCO2eq), for the deadhead
miles of all the trips. The 𝑦-axes on the right show the waiting time
(seconds), measured as the time period between a rider posting the
request and the driver picking up, at different scales. Our results
demonstrate that our proposed ERA algorithm, albeit offline with
complete knowledge of future rides, can reduce the deadhead miles
emissions by 48.7% (from 626gCO2eq to 321gCO2eq). Importantly,
the average waiting time across all trips also decreased by 8.5%
(from 330s to 302s) as ERA reduced the deadhead miles, but the
longest waiting time increased by 2.94× to almost 94 minutes from
the 32 minutes observed for the default ride assignment.

Takeaway. Offline emission-aware algorithms can reduce dead-
head emissions by 48.7% and decrease average waiting time by 8.5%,
but they require future knowledge and increase worst-case wait time.

3 INITIAL IDEAS FOR ALGORITHM DESIGN
Our preliminary results motivate the design of computationally
efficient, data-driven, online algorithms for emission-aware ride
assignments. In designing our algorithms, we make three novel and
unique contributions. (❶) As a foundational step, we will develop an
online, data-driven, and emission-aware ride assignment algorithm
that directly targets reducing the emissions from the deadhead
miles of a ride-sharing fleet consisting of both gas-powered and
electric vehicles. (❷) We will extend our algorithm to satisfy EV
charging constraints, both w.r.t. charging rate and availability, and
incorporate further optimizing emissions by leveraging locational
marginal emissions information if, and when, available. (❸) Finally,
our multi-objective ride-sharing assignment approach will incor-
porate the performance constraint on rider’s wait time (average or
worst) and equity constraints on driver’s ride assignment and the
deadhead miles travelled by the driver.
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