
Smoothed Online Optimization for Target Tracking:
Robust and Learning-Augmented Algorithms

Ali Zeynali
University of Massachusetts Amherst

azeynali@cs.umass.edu

Mahsa Sahebdel
University of Massachusetts Amherst

msahebdelala@umass.edu

Qingsong Liu
University of Massachusetts Amherst

qingsongliu@umass.edu

Mohammad Hajiesmaili
University of Massachusetts Amherst

hajiesmaili@cs.umass.edu

Ramesh K. Sitaraman
University of Massachusetts Amherst & Akamai Technologies

ramesh@cs.umass.edu

Abstract

We introduce the Smoothed Online Optimization for Target Tracking (SOOTT) prob-
lem, a new framework that integrates three key objectives in online decision-making
under uncertainty: (1) tracking cost for following a dynamically moving target,
(2) adversarial perturbation cost for withstanding unpredictable disturbances, and
(3) switching cost for penalizing abrupt changes in decisions. This formulation
captures real-world scenarios such as elastic and inelastic workload scheduling in
AI clusters, where operators must balance long-term service-level agreements (e.g.,
LLM training) against sudden demand spikes (e.g., real-time inference). We first
present BEST, a robust algorithm with provable competitive guarantees for SOOTT.
To enhance practical performance, we introduce CoRT, a learning-augmented vari-
ant that incorporates untrusted black-box predictions (e.g., from ML models) into
its decision process. Our theoretical analysis shows that CoRT strictly improves
over BEST when predictions are accurate, while maintaining robustness under
arbitrary prediction errors. We validate our approach through a case study on work-
load scheduling, demonstrating that both algorithms effectively balance trajectory
tracking, decision smoothness, and resilience to external disturbances.

1 Introduction

This paper introduces and studies the Smoothed Online Optimization for Target Tracking problem
(SOOTT), a new framework that captures three interacting objectives in online target tracking. At
each round, an agent selects an action, evaluated based on the alignment of a windowed average
of its recent actions with a dynamically moving target. The agent incurs three types of costs: (1)
a tracking cost penalizing deviations between the agent’s time-averaged action and a desired but
dynamically moving target, (2) an adversarial perturbation cost reflecting external disturbances that is
unpredictable and arriving online, and (3) a switching cost that penalizes abrupt changes in the agent’s
decisions. Together, these components form a composite loss that challenges conventional online
optimization techniques by introducing dependencies on both historical behavior and adversarial
adjustments. Effective minimization of this loss requires algorithms capable of balancing smooth
trajectory alignment, smoothness in decision-making, and resilience to adversarial disturbances.
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A key motivational application for studying SOOTT arises from the need to efficiently manage the
scheduling of elastic workloads (e.g., AI training) and inelastic workloads (e.g., AI inference) in
large-scale cloud and AI clusters [6, 27]. . In such environments, operators must simultaneously
maintain target processing rates for long-running elastic jobs to meet the customer service-level
agreements (SLAs) while accommodating unpredictable spikes in latency-sensitive inelastic workload.
This dual demand requires dynamic, on-the-fly resource reallocation, where elastic jobs (e.g., LLM
training, finance analysis, software maintenance, and upgrade) can be paused or throttled to prioritize
inelastic jobs (e.g., real-time AI inference). At each decision epoch and before the realization of
the inelastic demand, operators must judiciously determine what fraction of resources to allocate to
inelastic jobs, leaving the remainder for elastic ones. Over-allocating (allocating resources more than
the realized demand) to inelastic jobs risks leaving resources idle and failing to meet the SLA of
elastic jobs, while under-allocating can result in unserved inference requests [40, 19]. Additionally,
this flexibility in resource allocation between elastic and inelastic workload comes at a cost: frequent
pause and resuming multi-hundred-gigabyte training workloads impose heavy checkpoint-and-restore
penalties, making reckless preemption highly counterproductive [25, 26], and SOOTT captures this
by adding the switching cost terms. This motivates our SOOTT framework, which captures these
trade-offs explicitly: (1) the sliding window tracking term that models long-term SLA requirement
for elastic jobs over time, (2) the adversarial perturbation term represents bursty or unpredictable
demands in inelastic jobs that can only be observed after resource allocation; and (3) the switching
cost accounts for the overhead of frequent changes in resource (re)allocation.

Beyond the main case study of the elastic and inelastic workload scheduling, SOOTT is a general frame-
work that is well-suited for broader range of applications, e.g., server maintenance scheduling [22, 32],
where consistent service requires regular interventions over a time window; image-based object
tracking [8, 44, 15], where predictions must remain coherent across frames, online control [53, 55]
where system stability and performance depend on sequences of past inputs, and resource pooling in
shared infrastructures, e.g., in multi-tenant cloud platforms and shared Electric Vehicle (EV) charging
platforms [38]. In resource pooling of shared infrastructures, operators dynamically allocate shared
resources—such as compute, bandwidth, or energy—among multiple users or applications with vary-
ing demand profiles and SLA requirements. The challenge is to maintain fair and efficient resource
distribution in the presence of unpredictable and non-stochastic workload. Our model naturally
captures the need for smooth adjustments while mitigating abrupt disruptions in the allocations.

On the theory front, our framework brings together two well-studied strands of online optimization for
target tracking that have so far evolved largely in parallel: (1) memory-based online tracking, where
past actions influence current tracking cost [34, 35, 53]; and (2) smoothed online optimization [5,
43, 53] which penalizes abrupt changes in decision-making. We provide a comprehensive review
of the related literature in the Appendix §A and highlight how existing algorithms fail to solve
our problem holistically. Specifically, existing methods either neglect the memory-based dynamics
introduced by the sliding window tracking term or significantly simplify them, or overlook the role
of the smoothness component. In this paper, we develop algorithms for SOOTT under competitive
worst-case analysis (i.e., without assuming any predictions of adversarial perturbations and dynamic
target) and aim to develop algorithms that achieve a solid constant competitive ratio, defined as the
worst-case ratio between the cost of an online algorithm and the offline optimum [7, 39].

While worst-case guarantees offer robustness, they may be overly conservative or cautious. In recent
years, learning-augmented online algorithms [37, 42] have emerged to use potentially imperfect
predictions to achieve two goals: performing near-optimally when the predictions are accurate (i.e.,
consistency) and retaining worst-case guarantees when predictions are misleading (i.e., robustness).
These algorithms bridge the gap between worst-case guarantees and practical performance by incor-
porating untrusted predictions. However, applying this to our setting introduces unique challenges.
Unlike classical online models where predictions are straightforward (e.g., demand or price forecasts),
the interplay between sliding-window tracking, adversarial perturbation, and switching costs creates
complex interdependencies. As a second goal of this paper, we aim to propose learning-augmented
algorithms that effectively integrate machine-learned advice to enhance practical performance while
retaining robustness against erroneous predictions.

Main contributions. We study the problem of smoothed online optimization for target tracking,
denoted as SOOTT, where the objective is to minimize a cost function including three components:
(1) tracking cost, (2) adversarial cost, and (3) switching cost. We provide both robust and learning-
augmented algorithms for SOOTT and the key technical contributions are summarized below.
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Competitive analysis. We begin by presenting IGA, a semi-online algorithm that has access to the
adversary’s exact target for the current time step, but not for future. Through a competitive analysis,
we establish a constant upper bound on its competitive ratio. Building on this, we propose BEST,
a fully online algorithm for SOOTT, and analyze its worst-case performance by bounding its cost
relative to that of IGA. Furthermore, we demonstrate the tightness of our competitive guarantees by
showing that it recovers the best-known results in relevant special cases [43, 16].

Learning-augmented analysis. To improve performance beyond worst-case guarantees, we consider
the learning-augmented setting. We begin with a natural baseline algorithm that fully trusts pre-
dictions; while it performs near-optimally with perfect predictions, it is fragile under adversarial
noise and lacks robustness in such cases. To address the lack of robustness, we propose CoRT, a
robust learning-augmented algorithm that leverages predictions to improve over BEST when they
are accurate, while still retaining competitive guarantees under worst-case conditions. Our analysis
reveals a fundamental trade-off in CoRT between its consistency and robustness, which can be tuned
via a controllable algorithmic parameter.

Case study. Using real-world traces from Google Cloud [17], we empirically evaluate our algorithms
through a case study on dynamic resource allocation for both elastic and inelastic workloads. Notably,
our experiments demonstrate that the performance of the CoRT algorithm closely approaches that of
IGA —our proposed semi-online but impractical algorithm that assumes perfect knowledge of online
inputs—while also maintaining robustness against arbitrarily inaccurate predictions.

Technical novelty. Our analysis builds on two new ingredients: (1) we leverage the fact that the
auxiliary objective gt(u)(Lemma B.3) is strongly convex, and together with a Lipschitz-stability
result for the windowed minimiser (Lemma B.2), to achieve a two-level contraction that simulta-
neously reduces the prediction gap and the accumulated history error. (2) We develop a bespoke
sliding-window Cauchy–Schwarz lemma (Lemma B.4) to convert convoluted memory sums into
point-wise norms while preserving tight constants. These tools drive the tight bounds for BEST and
the consistency–robustness guarantee of our learning-augmented CoRT algorithm.

2 Problem Formulation

Model and problem statement. We consider the problem of smoothed online optimization for target
tracking (SOOTT) where an agent chooses an action at each time step under an adversarial perturbation
setting. At each time t  N, a trajectory target point τt  Rd and a time-varying adversarial
perturbation function ft : Rd → R≥0 are revealed to the agent. Meanwhile, the adversary selects a
hidden target ut  Rd, which is disclosed only after the agent has chosen action xt  D ⊂ Rd, where
D is a compact set representing the domain of valid actions. The agent then incurs the following cost:

Costt(xt, ht) =


xt + ht

w + 1
− τt


2

  
tracking cost

+λ1ft(xt − ut)  
adversarial cost

+λ2∥xt − xt−1∥2  
switching cost

, (1)

where ht =
w

i=1 xt−i represents the aggregation of the agent’s past w actions, and λ1,λ2 > 0 are
fixed weighting parameters. The goal of the agent is to select actions that minimize the cumulative
cost over T time steps:

T
t=1 Costt(xt, ht).

This cost function captures three competing objectives. The first term penalizes deviations between
the agent’s time-averaged action over the current and past w rounds and a desired trajectory target
τt, thereby encouraging tracking the moving target. The second term, λ1ft(xt − ut), reflects the
adversarial influence and penalizes discrepancies between the agent’s action and the (hidden) target
of the adversary, ut, through a function ft. The third term, λ2∥xt − xt−1∥2, imposes a regularization
that discourages abrupt changes in the agent’s behavior over consecutive slots, promoting smoothness
in the sequence of actions. The trade-offs between these objectives are governed by the parameters
λ1 and λ2.

To enable tractable analysis, we impose the following standard structural assumptions on the adver-
sarial perturbation and initialization:

Assumption 1 (Adversarial Minimum). The time-dependent adversarial perturbation function ft(·)
is non-negative and minimized at the origin without loss of generality, i.e., argmin ft(x) = 0.
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Assumption 2 (Adversarial Convexity). Function ft(·) is m-strongly convex for some m > 0.

Assumption 3 (Adversarial Smoothness). Function ft(·) is ℓ-smooth, meaning its gradient is ℓ-
Lipschitz continuous for some ℓ > 0.

Assumption 4 (Initial Convergence). For all t ≤ 0, the agent’s actions and the adversary’s targets
are both initialized at the origin. Additionally, the online algorithm coincides with the offline optimal
strategy over this initial period.

These assumptions are standard online optimization literature and allow for meaningful theoretical
analysis [43, 51, 31, 56]. Assumption 1 ensures that the adversarial cost cannot reward the agent
through negative values and is minimized when the agent exactly matches the target of the adversary.
Assumptions 2 and 3 impose structure to the adversarial perturbations, enabling gradient-based
analysis. Finally, Assumption 4 provides a synchronized and consistent initialization for the online
optimization process.

Challenges. A major key challenge in SOOTT arises from the presence of memory, i.e., term ht, and
xt−1, that includes the historical actions, in the cost function, which introduces temporal coupling
across decisions. Specifically, the agent’s current cost depends not only on its present action but
also on a window of past actions. Prior work [43, 16, 9] has demonstrated that, even in an idealized
setting where the agent has full knowledge of the target of the adversary, ut, before committing to an
action, identifying the optimal decision remains nontrivial due to this memory dependency. Notably,
when the influence of memory is limited—e.g., when the memory window w and the smoothness
regularization coefficient λ2 are sufficiently small—the problem becomes effectively myopic. In such
cases, a greedy strategy that minimizes the instantaneous cost can closely approximate the optimal
offline policy which has a full knowledge of future input, i.e., τt, utTt=1, and adversarial cost
functions ftTt=1. The second challenge in SOOTT stems from the fact that the target of the adversary
ut is revealed only after the agent has selected xt. Thus, the adversarial cost term is not directly
observable at the time of decision, which complicates the design of algorithms with guaranteed
performance.

Competitive analysis. Our goal is to design an online algorithm that guarantees a small com-
petitive ratio [7, 39] which guarantees performing near optimal offline algorithm. Formally,
for an online algorithm ALG and an input instance I, the competitive ratio is defined as:
CR(ALG) = supI Cost(ALG, I)Cost(OPT, I), where Cost(ALG, I), and Cost(OPT, I) de-
note the cost of algorithm ALG and offline optimum on instance I. In addition, to further
simplify the presentation of theoretical bounds, in this paper we use the degradation factor
(DF) metric, introduced in [50], to bound the worst-case ratio between the performance of two
online algorithms. Specifically, the degradation factor of algorithm ALG1 relative to another
algorithm ALG2 is defined as: DF(ALG1, ALG2) = supI Cost(ALG1, I)Cost(ALG2, I),
which also implies an upper bound on the competitive ratio of ALG1 in terms of that of ALG2:
CR(ALG1) ≤ DF(ALG1, ALG2) · CR(ALG2) When ALG2 is the optimal offline algorithm, the
degradation factor coincides with the competitive ratio of ALG1.

3 Robust Online Algorithms for SOOTT
In this section, we introduce IGA, a semi-online benchmark algorithm that relaxes the uncertainty of
ut by assuming that the adversary’s target ut is known at the current time step, but remains unknown
for future time steps. Although this assumption is unrealistic in most practical scenarios, IGA plays
an important analytical role, serving as a performance baseline against which we compare more
practical algorithms that do not have access to this information. Then, in Section 3.2, we present
BEST, a fully online algorithm that operates without knowledge of the adversary’s target and analyze
its performance by bounding its degradation factor relative to IGA.

3.1 IGA: A Semi-online Benchmark Algorithm with Exact Knowledge of ut

This section introduces Informed Greedy Algorithm (IGA), which known ut when taking its action.
Given this additional information, IGA selects actions that greedily minimize the cost function at each
time step. This setting captures an idealized scenario in which the adversary’s intention is perfectly
predictable and the cost structure is fully known in advance. Although such assumptions may not
hold in practice, the performance of IGA offers a meaningful baseline to assess the quality of practical
online algorithms.
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At each time step t, IGA observes the target of the adversary ut and chooses an action xt that
minimizes the total cost over the current time step, balancing target tracking, adversarial deviation,
and switching penalties. The pseudo-code of IGA is presented in Algorithm 1.

Algorithm 1: The Informed Greedy Algorithm (IGA)
Data: x̂t−w:t−1, ut, τt
Result: x̂t: action of the IGA at time t

1 x̂t ← argminx x+ĥt

w+1 − τt2 + λ1 ft(x− ut) + λ2x− x̂t−12
2 Output: x̂t

Since IGA has the full knowledge of the cost function at time step t, it can select the action that
minimizes the cost at that time step, given the current history ht. However, as it lacks foresight into
future target values τt and target of the adversary ut, its chosen actions may still diverge from those
of the optimal offline solution. The following result establishes a performance guarantee for IGA in
terms of its competitive ratio, evaluated against the cost incurred by the optimal offline strategy.

Theorem 3.1. If 2w2 < 2 +mλ1(w + 1)2, the competitive ratio of IGA is upper bounded by

CR(IGA) ≤ 1 +
2(λ2 (w + 1)2 + w2)

mλ1(w + 1)2 + 2− 2w2
 (2)

The proof of Theorem 3.1 is given in Appendix §B.1. When both λ1 and λ2 are large, the setting
reduces to standard smoothed online convex optimization [16, 43, 28], and the competitive ratio of
IGA converges to 1+ 2λ2

mλ1
, consistent with results in the literature [43, 16]. When w > 0, the optimal

offline algorithm considers future consequences of current actions, while IGA makes locally optimal
decisions using perfect knowledge of ut. In such cases, when λ1 is small or ft is weakly convex,
the impact of adversarial cost is diminished, and IGA may perform arbitrarily worse than the offline
optimum—hence the necessity of the condition in Theorem 3.1 to ensure bounded competitive ratio.

In the remainder of the paper, we develop online algorithms without perfect information of ut and
assess their performance using the degradation factor metric with respect to IGA. This allows us to
derive meaningful performance guarantees relative to the offline optimum by combining the bounds
on the degradation factor with the result of Theorem 3.1.

3.2 BEST: A Robust Algorithm for SOOTT

We present Backward Evaluation for Sequential Targeting (BEST), an online algorithm for SOOTT
that does not require any knowledge of ut in the current and future time step. Since online algorithms
lack exact information about the adversary’s target, a naive greedy approach (which is also blind
to ut) that minimizes the cost at each time step independently can diverge significantly from the
behavior of the IGA, leading to substantially higher cumulative costs. Our algorithm is designed to
keep its actions close to the actions of the IGA by considering the history of IGA during its action
selection process. BEST ignores the adversarial cost term in its own historical actions, and selects
its action based on the history of IGA. Note that the history of IGA is accessible to BEST since, after
observing the target of the adversary in each time step, one could exactly calculate the corresponding
action of IGA. We present the pseudo-code of BEST in Algorithm 2.

Algorithm 2: Backward Evaluation for Sequential Targeting (BEST)
Data: ut−1, τt, x̂t−w−1:t−2 : history of actions taken by IGA
Result: xt: action of the agent at time t

1 x̂t−1 ← action of IGA at time step (t− 1)

2 xt ← argminx x+ĥt

w+1 − τt2 + λ2x− x̂t−12
3 Output: xt

In Line 1, BEST finds the action of IGA in the previous time step, x̂t−1, since the most recent target
of the adversary has already been revealed. It keeps track of the history of action taken by IGA
and evaluates x̂t−1, and ĥt based on IGA’s past actions. Next, in Line 2, BEST observes the current
trajectory target τt and selects its action by ignoring the adversarial cost term and assuming its history
matches that of IGA. Note that if the target of the adversary at time step t, is different from xt, the
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action of BEST, xt, and the action of IGA, x̂t will be different. Due to this difference, the cost value
incurred by IGA at time step t would be proportional to xt− x̂t2 since all terms in the cost function
are convex and smooth. This insight shows how BEST keeps its cost values close to the cost of IGA
algorithm which formally analyzed in the following Theorem. The following Theorem shows that
BEST achieves a bounded degradation factor with respect to IGA proving its worst-case performance
guarantee when combined with the result of Theorem 3.1.

Theorem 3.2. The degradation factor of BEST with respect to IGA is bounded as follows:

DF(BEST, IGA) ≤ 1 +
ℓ

m
· η

2 + 2λ1ℓ(1 + λ2)

η(η −mλ1)
 (3)

where η = 2(w + 1)2 +m λ1 + 2λ2.

The complete proof of Theorem 3.2 is provided in Appendix §B.2. As a sketch of the proof, we
define an auxiliary function gt(u) that represents the cost incurred by IGA at time step t, assuming
the adversary’s target is u. We show that gt(u) is strongly convex, with its unique minimizer
corresponding to the action selected by BEST. This structural property allows us to bound the cost
difference between BEST and IGA in terms of the cost of IGA and problem-specific constants. Then,
we choose the hyperparameters introduced in the analysis, to ensure that the additive constant term in
the bound is negative, which guarantees that BEST achieves a constant degradation factor.

Remark 3.1. The degradation factor of BEST relative to IGA grows at most as O(mλ1) with respect
to λ1 and m. This is intuitive, as increasing either parameter linearly amplifies the influence of the
adversarial cost term in its objective. Since BEST does not account for this adversarial term in its
action selection policy, its performance gap relative to IGA increases linearly with λ1 and m.

4 Learning-Augmented Algorithms for SOOTT

Learning-augmented online algorithms incorporate machine-learned predictions of future inputs to
enhance classical online decision-making [37, 42]. In SOOTT, the algorithm receives a prediction of
the adversary’s target for the upcoming time step and integrates this estimate into its action selection
strategy. While accurate predictions can significantly improve performance, blindly trusting erroneous
predictions may lead to degraded outcomes, especially under high noise. To account for this, the
performance of learning-augmented algorithms is typically evaluated using two complementary
metrics: consistency, which captures performance under accurate predictions, and robustness, which
measures resilience against arbitrary prediction errors. Achieving both objectives simultaneously is
challenging, as improving consistency often comes at the expense of robustness, necessitating careful
algorithmic design to manage this trade-off [42].

Let ût denote the prediction of the adversary’s target for time step t. As discussed in Section 3, we
use IGA as a baseline to evaluate the performance of online algorithms. Based on this, we define the
notions of consistency and robustness for the SOOTT setting as follows:

Denition 4.1. A learning-augmented algorithm for SOOTT is α-consistent if its degradation factor
relative to IGA is at most α under perfect predictions, i.e., when ût = ut for all t.

Denition 4.2. A learning-augmented algorithm for SOOTT is said to be β-robust if its degradation
factor relative to IGA is at most β for any predicted sequence ûtTt=1.

In the following sections, we demonstrate that a greedy algorithm which selects actions to minimize
the immediate cost achieves optimal consistency but lacks robustness. To overcome this limitation,
we introduce a learning-augmented algorithm that incorporates a tunable parameter θ, allowing us to
control the trade-off between consistency and robustness.

4.1 PGA: An Algorithm with Full Trust on the Prediction

In this section, we present the Prediction-based Greedy Algorithm (PGA), which greedily finds the
action that is predicted to minimize the cost value during time step t. Given the predicted adversary’s
target ût at time step t, PGA fully trusts the prediction and chooses the action that leads to the lowest
cost for the current time step. The detail of PGA is provided in Algorithm 3.
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Algorithm 3: Prediction-based Greedy Algorithm (PGA)
Data: x̃t−w:t−1, ût, τt
Result: x̃t: action of the agent at time t

1 x̃t ← argminx x+h̃t

w+1 − τt2 + λ1 · ft(x− ût) + λ2x− x̃t−12
2 Output: x̃t

Since PGA selects its actions by fully trusting the predicted adversary’s target, its performance is
highly sensitive to prediction errors. When the prediction is perfect, PGA takes the same actions
as IGA, thereby achieving optimal consistency. However, with prediction errors, the cost incurred
by PGA can deviate significantly from that of the optimal offline solution. The following theorem
provides a lower bound on the degradation factor of PGA as a function of the prediction error in ût.
Theorem 4.3. The degradation factor of PGA with respect to IGA is lower bounded as follows:

DF(PGA, IGA) ≥ m

2 maxt ft(0)

T

t=1

∥ut − ût∥2
T



The full proof of Theorem 4.3 is provided in Appendix §B.3.
Remark 4.1. Since maxt ft(0) can be arbitrarily close to zero, and the prediction error ∥ut − ût∥
is unbounded, the cost of PGA can become arbitrarily large relative to IGA in the worst case. This
demonstrates that PGA lacks robustness when faced with inaccurate predictions.

Motivated by the lack of robustness in PGA, in what follows, we aim to design a learning-augmented
algorithm that not only enhances the performance of BEST under perfect predictions but also maintains
provable robustness guarantees under noisy or adversarial prediction errors.

4.2 CoRT: A Consistent and Robust Learning-Augmented Algorithm for SOOTT

We propose the Consistent and Robust Tracking algorithm (CoRT), which incorporates predictions
of the adversary’s target ût while providing provable robustness guarantees (see Algorithm 4 for
the pseudo-code). Like BEST, CoRT selects actions using the history of IGA. However, it accounts
for the adversarial cost term by estimating it through a controlled target ũt, computed from ût and
constrained to lie within a distance of at most θDt from BEST’s action (Lines 2–5). Here, θ is a
tunable algorithm parameter, and Dt is a dynamically adjusted bound. The algorithm initializes
with D1 = 0 and updates Dt based on its previous value, the deviation between ut and BEST ’s
action, and the discrepancy between that action and ũt (Line 7). Intuitively, CoRT adaptsDt to reflect
the observed deviation of the actual adversary’s target from BEST ’s action, thereby bounding the
cumulative deviation of ũt from BEST ’s action. See Figure 1 for an illustration. In the limiting case,
CoRT recovers BEST as θ → 0.

Algorithm 4: Consistent and Robust Tracking Algorithm (CoRT)
Data: ût, τt, Dt, parameter θ, x̂t−w−1:t−2: history of actions

taken by IGA
Result: x̃t: action of the agent at time t

1 xt ← action of BEST at time t
2 ũt ← ût

3 if ût − xt ≥ θDt then
4 ũt ← xt + θDt · (ût−xt)

||ût−xt||
5 end

6 x̃t ← argminx

x+ĥt

w+1 − τt


2

+ λ1ft(x− ũt) + λ2 ∥x− x̂t−1∥2

7 D2
t+1 ← D2

t + ut − xt2 − θ−2ũt − xt2
8 Output: x̃t

Figure 1: Actual vs. predicted
targets for a time step, and the
corresponding update of Dt.

Theorem 4.4. Given parameter θ, CoRT is DF(BEST, IGA)(1 + θ2O(1))-robust and C-consistent
where:

C ≤ ψ(θ) + (1− ψ(θ)) · DF(BEST, IGA) + 2λ1λ2ℓ
2

mη(η −mλ1)
· θ2

1 + θ2
, (4)

7



and ψ(θ) : R≥0 → [0, 1] is an increasing function satisfying ψ(0) = 0 and ψ(∞) = 1.

The full proof of Theorem 4.4 is provided in Appendix §B.4. As a sketch, we first show that the cost
incurred by CoRT deviates from that of BEST by at most a linear function of the aggregate deviation

t ∥xt − x̃t∥2, where xt and x̃t denote the actions of BEST and CoRT at time t, respectively. We
then prove that this deviation is upper bounded by a factor proportional to θ2 times the cost of
BEST, establishing the robustness guarantee. Furthermore, under perfect predictions, to construct a
challenging instance, an adversary must increase the separation between its own action and that of
BEST over time. Also, in such condition, the action of CoRT at each time step is a convex combination
of the actions of BEST and IGA. This linear relationship among the actions allows us to show that the
cost of CoRT is a convex combination of the costs of BEST and IGA, up to a bounded additive error,
which yields the consistency bound.

Remark 4.2. Theorem 4.4 illustrates a trade-off in CoRT between its consistency and robustness,
governed by the parameter θ. As θ increases, robustness improves at most quadratically, while
the consistency decreases. In the limit as θ → ∞, CoRT achieves its best possible consistency but
completely sacrifices robustness.

5 Case Study: Resource Allocation for Elastic and Inelastic Workloads
We consider a case study involving resource allocation in cloud computing platforms handling both
elastic and inelastic workloads. In this setting, we evaluate our proposed algorithms for SOOTT and
compare them in average and adversarial scenarios.

Experimental setup. We model a cloud computing platform comprising multiple independent
resources (e.g., processing units such as CPUs or GPUs), serving two categories of jobs. The first
category, inelastic jobs, consists of online job requests that require immediate allocation of resources,
which remain occupied until the job is completed. The second category, elastic jobs, comprises
predefined jobs that can be paused and resumed over time.

The platform dynamically allocates a subset of resources to elastic workloads, while the remaining
units are used to process inelastic workloads. The goal is to maintain long-term SLA requirements
close to predefined targets, while serving as many inelastic jobs as possible. These inelastic workloads
may vary over time (e.g., due to hourly or daily patterns), making future demand difficult to predict.
At each time step, the system must decide what fraction of processing units to allocate to elastic jobs,
leaving the remainder for inelastic requests.

Constructing the SOOTT instance. We construct instances of SOOTT as follows: the platform acts
as the decision-making agent. At time t, the agent selects an action xt, representing the fraction
of available resources allocated to inelastic jobs (D = [0, 1]). The target for the processing rate of
elastic jobs is denoted by τt, defined over a moving window of size w. In addition, 1− ut shows the
workload demand of inelastic jobs during the next processing interval. In this setting, the tracking
cost captures deviations from the target elastic processing rate, while the adversarial cost measures
the gap between the actual allocation to elastic jobs and the maximum feasible allocation that would
still satisfy all inelastic job requests.

Workload dataset and parameter settings. We use CPU utilization traces from the Google Cluster
dataset (GCD) [17], which contains utilization records from a total of 1,600 virtual machines. The
dataset provides CPU and memory utilization measurements at five-minute intervals. We divide
each day into three workload periods: 8 PM–4AM (off-peak; low demand), 4 AM–12 PM (mid-peak;
medium demand), and 12 PM–8 PM (on-peak; high demand). Accordingly, we set τt = 04 during
low-demand hours, τt = 03 during medium-demand hours, and τt = 02 during high-demand hours.
These thresholds result in an average allocation of approximately 30% across the day. (we have also
evaluated other daily averages of τt; results are provided in Appendix §C) At each time step t, we
extract the inelastic job utilization from the GDC dataset and define ut as one minus this utilization.
To model adversarial behavior, we use a standard convex cost function, ft(x) = ∥x∥2 which is
commonly used in the literature [43, 3] We vary λ1, w, θ, λ2, and the daily average of τt to evaluate
their influence on the performance of online algorithms. When analyzing each parameter, we fix the
others as follows: λ1 = 1 (equal weight on elastic and inelastic jobs), λ2 = 01 (to assign a 10%
weight to job-switching costs), w = 12 (corresponding to a one-hour history window), and θ = 05.

Prediction models. Since both CoRT and PGA rely on predictions of ut, we evaluate three prediction
models in our analysis: (1) Predictor: We employ an LSTM-based model [21] to forecast ut based
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(a) Impact of parameter λ1 (b) Impact of history’s length w

Figure 2: Impact of λ1 (a) and w (b) on the cost of different algorithms. Increasing λ1 or decreasing
w amplifies the influence of the adversarial cost term, leading to higher overall costs.

Figure 3: Comparison of the cost of PGA and CoRT as a function of θ under three prediction scenarios:
pessimistic prediction (left), LSTM-based prediction (center), and perfect prediction (right).

on its historical values (see Appendix §C for details). (2) Pessimistic: We define the prediction as
ût = xt + (xt − ut), where xt is the action taken by BEST at time t. This formulation reflects ut

across xt, resulting in a prediction that is deliberately misaligned with the true value, simulating an
adversarial scenario. (3) Optimistic: This model assumes perfect prediction scenario, i.e., ût = ut.

Experimental results. Figure 2 illustrates the impact of varying the parameter λ1 and the history
length w on the cost of online algorithms. As shown, increasing λ1 magnifies the influence of
the adversarial cost component within the overall cost function. Consequently, the cost of online
algorithms such as BEST, PGA-Pessimistic, and CoRT-Pessimistic—each lacking foresight into the
adversary’s future targets—increases almost linearly with respect to λ1, confirming the trend described
in Remark 3.1. Notably, the increase in cost for BEST is significantly smaller than that of PGA-
Pessimistic and CoRT-Pessimistic, indicating its stronger robustness. Additionally, we observe that
as the history length w increases, the importance of action smoothness becomes more prominent,
making the problem easier for online algorithms. In such settings, the gap between the cost of online
algorithms and the optimal offline algorithm tends to narrow. Finally, we observe that the costs
incurred by PGA-Predictor and CoRT-Predictor are close to those of IGA, which is due to the high
accuracy of the Predictor model in predicting ut (see Appendix §C for additional details).

Another observation is that in certain problem instances, algorithms such as CoRT-Predictor and BEST
can achieve a lower cost than IGA. This may seem counterintuitive, as IGA has full knowledge of the
adversary’s target at the current time step. However, it still lacks information about future trajectory
targets and future adversarial behavior. As a result, BEST—by leveraging history more effectively—
can outperform it in some cases, but not certainly in worst-case as indicated in Theorem 3.2.

Figure 3 illustrates the impact of the parameter θ on the cost of CoRT under three prediction models:
Optimistic, Predictor, and Pessimistic. The results show that when CoRT is provided with an
adversarial prediction of ut (i.e., the Pessimistic model), its cost increases almost quadratically with
respect to θ, confirming the theoretical result in Theorem 4.4. This suggests that, to ensure strong
robustness, smaller values of θ should be chosen. Conversely, the analysis using the Optimistic
predictor indicates that increasing θ can lead to lower costs, thereby improving consistency. Together,
these results highlight a fundamental trade-off between consistency and robustness in the performance
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of CoRT, governed by the choice of the parameter θ. We conducted further experimental analyses, the
details of which are presented in Appendix §C.

6 Concluding Remarks
We introduced a new framework for Smoothed Online Optimization in target tracking, which unifies
tracking of a dynamic target, robustness to adversarial perturbations, and switching costs, into a single
principled formulation. Our proposed algorithms, BEST and its learning-augmented counterpart CoRT,
offer both theoretical guarantees and strong empirical performance in applications such as elastic and
inelastic workload scheduling. A promising direction is to design robust and competitive algorithms
that relax the convexity and smoothness assumptions, thereby extending applicability to a broader
range of practical settings. On the learning-augmented front, an interesting future work is to develop
risk-aware learning-augmented algorithms that can dynamically adjust their reliance on predictions
based on uncertainty quantification models [45, 12].
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A Additional Literature Review

Online Linear Tracking Control Problem The online linear tracking control problem [34, 35, 53]
models a sequential decision-making scenario in which an agent selects actions over a horizon of T
time steps. At each time step t, given the current state st  R, the agent selects an action xt  Rd.
The environment then updates the state st+1 based on a known dynamics model that incorporates the
previous state st, the current action xt, and potentially an adversarial perturbation. The agent incurs a
cost composed of a state-dependent loss ft(st+1) and an action-dependent loss ct(xt).

This framework introduces significant challenges due to the interaction between the agent’s actions,
the system dynamics, and adversarial perturbations—making it difficult to match the performance of
an optimal offline algorithm that knows all future perturbations in advance. Nonetheless, the problem
is highly relevant in several practical domains. For example, in autonomous systems [10, 46], self-
driving vehicles must adjust their control strategies to track target trajectories despite disturbances such
as wind or road condition changes. In energy grid management [47, 52], EV charging infrastructures
must dynamically adapt to unpredictable demand fluctuations while maintaining load balance. The
model is also applicable to network congestion control [1, 29], where network traffic must be regulated
under fluctuating bandwidth constraints, and to robotic manipulation [36, 4], where robots must
precisely follow motion plans despite external forces.

A common assumptions in previous works is the convexity of cost functions. If x∗
t denotes the

minimizer of the per-step cost, then tracking x∗
t closely over time is key to minimizing cumulative

cost. In some variants, such as the online tracking control with memory, cost functions additionally
depend on a history window of past actions, typically of size w. That is, the action cost at time t may
be a function ct(xt, xt−1,    , xt−w). A prominent special case is the switching cost model, where
the cost penalizes rapid changes between consecutive actions. This is often expressed as and has been
widely studied [53, 54, 55, 51, 25] to encourage smoother control policies.

Theoretical guarantees for this problem have been the subject of extensive research. In [53], the au-
thors propose an algorithm for online tracking control with memory using online convex optimization
techniques and establish a regret bound of O(log T ·

√
T ). In [34], a predictive control algorithm is

introduced that forecasts k steps ahead and selects actions accordingly. They show that the algorithm
achieves linear regret in T , with the regret decreasing exponentially as a function of the prediction
window size k. However, they also observe that the competitive ratio can increase exponentially with
k, revealing a trade-off: longer prediction windows may reduce regret due to foresight, but at the cost
of higher sensitivity to prediction errors. More recently, [35] proposed a gradient-based method that
achieves a sublinear regret of O(

√
T ).

However, prior theoretically grounded works in this area primarily focus on minimizing short-term
state and action costs, often under linear dynamic assumptions and immediate tracking objectives,
without explicitly accounting for long-term behavioral constraints. As a result, they do not capture
our smoothed tracking objective, which requires the agent to keep the average of its actions over a
window close to a dynamically evolving sequence of targets.

Online Convex Optimization The convexity assumption and leveraging an online convex opti-
mization techniques is common in design and analysis of algorithms for online optimization for
target tracking [55, 24, 57, 2, 41, 48]. In classic online convex optimization, the agent must selects
an action sequentially in order to minimize the aggregate time dependent cost function. Different
versions of online convex optimization have been introduced and studied in the literature. This in-
cludes time dependent convex cost function, ct(xt) [20, 23, 18], convex optimization with switching
cost [56, 49, 33], convex optimization with memory [5, 43], enhancement using prediction [11, 30, 31],
and considering adversarial perturbation in the cost function [43, 14, 13]. The similarity between
online convex optimization and online optimization for target tracking problem and numerous number
of previous works in online convex optimization have helped researchers to use their result for solving
different aspects of the online target tracking problem. However, most of these works either omit the
notion of tracking a time-varying target or focus only on instantaneous objectives, without modeling
the long-term smoothed tracking similar to our targeted problem setting.
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B Proofs of Theoretical Result

We start by providing proofs of key lemmas that support the theoretical results presented in the main
body of the paper.
Proposition B.1 (Lemma 4 from [43]). If f : Rd → R+ ∪ 0 is convex and ℓ-smooth, for any input
point x, and y, and positive variable δ we have:

f(y) ≤ (1 + δ)f(x) + (1 +
1

δ
)
ℓ

2
y − x2

Proof. The proof of the above proposition is given in lemma 4 of [43].

Lemma B.2. Consider the action selection algorithm defined as:

x(u, h) = argmin
x

 x+ h

w + 1
− τ 2 + λ1f(x− u) + +λ2x− z2,

where f(·) is an m-strongly convex, and ℓ-smooth function. Then, the following inequality holds:

x(û, ĥ)− x(u, h) ≤ 1

η


λ1ℓû− u+ 1

(w + 1)2
ĥ− h




where η = 2
(w+1)2 + λ1m+ 2λ2.

Proof. Let define function ϕ

x;u, h


as follows:

ϕ

x;u, h


=  x+h

w+1 − τ 2 + λ1 f

x− u


+ λ2 ∥x− z∥2

We can rewrite it as:

ϕ

x;u, h


=

1

(w + 1)2
∥x+ h− (w + 1)τ∥2 + λ1 f


x− u


+ λ2 ∥x− z∥2

The gradient of ϕ

x;u, h


can be derived as follows:

x ϕ

x;u, h


=

2

(w + 1)2

x+ h− (w + 1)τ


+ λ1 f


x− u


+ 2λ2


x− z




By definition, we have:
x(u, h) = argmin

x
ϕ(x;u, h),

x(û, ĥ) = argmin
x

ϕ(x; û, ĥ),

which implies
x ϕ


x(u, h);u, h


= 0, (5)

x ϕ

x(û, ĥ); û, ĥ


= 0 (6)

According to (6) we get:

x ϕ

x(û, ĥ);u, h


= x ϕ


x(û, ĥ);u, h


−x ϕ


x(û, ĥ); û, ĥ



=
2

(w + 1)2
(ĥ− h) + λ1


f


x(û, ĥ)− u


−f


x(û, ĥ)− û


 (7)

Since f(·) is ℓ-strongly smooth, we get:

f

x(û, ĥ)− u


−f


x(û, ĥ)− û


 ≤ ℓ 


x(û, ĥ)− u


−


x(û, ĥ)− û


 ≤ ℓ û− u

(8)

In addition , since f(·) is η-strongly convex, we get:

η x(û, ĥ)− x(u, h) ≤ xϕ(x(û, ĥ);u, h)−xϕ(x(u, h);u, h)
≤ xϕ(x(û, ĥ);u, h) (9)

where the last inequality holds due to (5). Combining (7), (8), and (9) completes the proof.
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Lemma B.3. Consider the function gt(u) defined as:

gt(u) =min
x

x+ ht

w + 1
− τt2 + λ1 · ft(x− u) + λ2x− xt−12,

where ft() is m-strongly convex function. The function gt(u) is η2-strongly convex, with η2 given
by:

η2 = mλ1(1−
mλ1

η
),

where η = 2
(w+1)2 +m · λ1 + 2λ2.

Proof. To simplify the analysis, we rewrite gt(u) as:

gt(u) =min
x

x+ u+ ht

w + 1
− τt2 + λ1 · ft(x) + λ2x+ u− xt−12,

To prove that gt(u) is η2-strongly convex, we need to verify the following inequality for any u1, u2

and γ  [0, 1]:

gt(γu1 + (1− γ)u2) ≤ γgt(u1) + (1− γ)ϕ(u2)−
η2
2
γ(1− γ)u1 − u22

Let:

x1 = argmin
x


x+ u1 + ht

w + 1
− τt


2

+ λ1ft(x) + λ2∥x+ u1 − xt−1∥2,

x2 = argmin
x


x+ u2 + ht

w + 1
− τt


2

+ λ1ft(x) + λ2∥x+ u2 − xt−1∥2

As gt(·) is strongly convex we get:

γgt(u1) + (1− γ)gt(u2)−
η2
2
γ(1− γ)u1 − u22

=γx1 + u1 + ht

w + 1
− τt2 + γλ1 · ft(x1) + γλ2x1 + u1 − xt−12

+(1− γ)x2 + u2 + ht

w + 1
− τt2 + (1− γ)λ1 · ft(x2) + (1− γ)λ2x2 + u2 − xt−12

−η2
2
γ(1− γ)u1 − u22

≥λ1 · ft(γx1 + (1− γ)x2) +
m · λ1

2
γ(1− γ)x1 − x22 + γx1 + u1 + ht

w + 1
− τt2

+(1− γ)x2 + u2 + ht

w + 1
− τt2 + γλ2x1 + u1 − xt−12 + (1− γ)λ2x2 + u2 − xt−12

−η2
2
γ(1− γ)u1 − u22,

where the above inequality holds since ft() is m-strongly convex. By using the definition of gt()
we get:

γgt(u1) + (1− γ)gt(u2)−
η2
2
γ(1− γ)u1 − u22

≥gt(γu1 + (1− γ)u2)− γ(x1 + u1) + (1− γ)(x2 + u2) + ht

w + 1
− τt2

−λ2γ(x1 + u1) + (1− γ)(x2 + y2)− xt−12 +
m · λ1

2
γ(1− γ)x1 − x22

+γx1 + u1 + ht

w + 1
− τt2 + (1− γ)x2 + u2 + ht

w + 1
− τt2
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+γλ2x1 + u1 − xt−12 + (1− γ)λ2x2 + u2 − xt−12 −
η2
2
γ(1− γ)u1 − u22,

Now using the fact that 1
2 

√
z1x− z22 is z1-strongly convex we get:

γgt(u1) + (1− γ)gt(u2)−
η2
2
γ(1− γ)u1 − u22 (10)

≥gt(γu1 + (1− γ)u2)− γ(x1 + u1) + (1− γ)(x2 + u2) + ht

w + 1
− τt2

−λ2γ(x1 + u1) + (1− γ)(x2 + y2)− xt−12

+γ(x1 + u1) + (1− γ)(x2 + u2) + ht

w + 1
− τt2

+
1

(w + 1)2
γ(1− γ)(x1 − x2) + (u1 − u2)2

+λ2γ(x1 + u1) + (1− γ)(x2 + u2)− xt−12 + λ2γ(1− γ)x1 − x2 + u1 − u22

−η2
2
γ(1− γ)u1 − u22 +

m · λ1

2
γ(1− γ)x1 − x22

=gt(γu1 + (1− γ)u2) +
m · λ1

2
γ(1− γ)x1 − x22

+
1

(w + 1)2
γ(1− γ)(x1 − x2) + (u1 − u2)2 + λ2γ(1− γ)x1 − x2 + u1 − u22

−η2
2
γ(1− γ)u1 − u22 (11)

In addition, we have:

m · λ1x1 − x22 +
2

(w + 1)2
(x1 − x2) + (u1 − u2)2

+2λ2x1 − x2 + u1 − u22 − η2u1 − u22

≥(m · λ1 +
2

(w + 1)2
+ 2λ2)x1 − x22 + (

2

(w + 1)2
+ 2λ2 − η2)u1 − u22

+2(
2

(w + 1)2
+ 2λ2)(x1 − x2) · (u1 − u2)

=

√
η(x1 − x2) +

η −m · λ1√
η

(u1 − u2)

2

≥ 0 (12)

Finally inserting Equation (12) into (11) completes the proof.

Lemma B.4 (Adaptation of the Cauchy–Schwarz Bound). Consider two sequences of actions
x1:T := [x1, x2, , xT ] and y1:T := [y1, y2, , yT ]. The following inequality always holds:

T

t=1


w

i=1

(yt−i − xt−i)



2

≤ w2
T

t=1

∥yt − xt∥2

Proof. Expanding the left-hand side:

T

t=1


w

i=1

(yt−i − xt−i)



2

=

T

t=1

w2


w

i=1

1

w
(yt−i − xt−i)



2



Applying Jensen’s inequality to the inner sum, we have:


w

i=1

1

w
(yt−i − xt−i)



2

≤
w

i=1

1

w
∥yt−i − xt−i∥2
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Substituting this into the original expression:

T

t=1


w

i=1

(yt−i − xt−i)



2

≤
T

t=1

w2
w

i=1

1

w
∥yt−i − xt−i∥2

Reorganizing the terms:

T

t=1


w

i=1

(yt−i − xt−i)



2

≤ w2
T

t=1

∥yt − xt∥2,

This completes the proof.

B.1 Proof of Theorem 3.1

Proof. Define η = 2(w + 1)2 +mλ1 + 2λ2 and the function F1(t) as:

F1(t) =
η

2
xt − x∗

t 2
where x∗

t represents the action of the optimal offline algorithm at time step t. Summing F1(t) over
all time steps gives:

T

t=1

F1(t) =

T

t=1

η

2
xt − x∗

t 2

=

T

t=1

F1(t− 1) +
η

2


xT − x∗

T 2 − x0 − x∗
02


= F1(T ) +

T

t=1

F1(t− 1)

which yields:

⇒
T

t=1

F1(t)− F1(t− 1) = F1(T ) ≥ 0 (13)

Here, we used the fact that x0 = x∗
0 from Assumption 4. Since x+ht

w+1 − τt2 + λ1 ft(x − ut) +

λ2x− xt−12 is η-strongly convex with respect to x, and xt is the minimizer, for w > 0 we obtain:

xt + ht

w + 1
− τt2 + λ1 ft(xt − ut) + λ2xt − xt−12

+
η

2
xt − x∗

t 2 −
η

2
xt−1 − x∗

t−12

≤ x
∗
t + ht

w + 1
− τt2 + λ1 ft(x

∗
t − ut) + λ2x∗

t − xt−12 −
η

2
xt−1 − x∗

t−12

=


λ1ft(x

∗
t − ut)


+


x

∗
t + ht

w + 1
− τt2 + λ2x∗

t − xt−12 −
η

2
xt−1 − x∗

t−12

, (14)

For any positive constants α and β, the latter term is bounded as follows:

x
∗
t + ht

w + 1
− τt2 + λ2x∗

t − xt−12 −
η

2
xt−1 − x∗

t−12

≤ x
∗
t + h∗

t

w + 1
− τt2 + ht − h∗

t

w + 1
2 + 2x

∗
t + h∗

t

w + 1
− τt · 

ht − h∗
t

w + 1


+ λ2x∗
t − x∗

t−12 + 2λ2x∗
t − x∗

t−1 · xt−1 − x∗
t−1+ λ2xt−1 − x∗

t−12

− η

2
xt−1 − x∗

t−12
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(a)

≤x
∗
t + h∗

t

w + 1
− τt2 + ht − h∗

t

w + 1
2 + 1

β
x

∗
t + h∗

t

w + 1
− τt2

+ βht − h∗
t

w + 1
2 + λ2x∗

t − x∗
t−12 +

λ2
2

α
x∗

t − x∗
t−12

+ αxt−1 − x∗
t−12 + (

2λ2 − η

2
)xt−1 − x∗

t−12

≤ (1 +
1

β
)x

∗
t + h∗

t

w + 1
− τt2 + (1 + β)ht − h∗

t

w + 1
2

+ λ2(1 +
λ2

α
)x∗

t − x∗
t−12 + (

2α+ 2λ2 − η

2
)xt−1 − x∗

t−12,

where (a) follows from the AM-GM inequality. By summing over all time steps, we have:

T

t=1


x

∗
t + ht

w + 1
− τt2 + λ2x∗

t − xt−12 −
η

2
xt−1 − x∗

t−12


(b)

≤(1 +
1

β
)

 T

t=1

x
∗
t + h∗

t

w + 1
− τt2


+

w2(1 + β)

(w + 1)2

 T

t=1

xt − x∗
t 2



+ λ2(1 +
λ2

α
)

 T

t=1

x∗
t − x∗

t−12

+ (

2α+ 2λ2 − η

2
)

 T

t=1

xt−1 − x∗
t−12



≤ (1 +
1

β
)

 T

t=1

x
∗
t + h∗

t

w + 1
− τt2


+ λ2(1 +

λ2

α
)

 T

t=1

x∗
t − x∗

t−12


+


2α+ 2λ2 + 2(1 + β)w2(w + 1)2 − η

2

 T

t=1

xt − x∗
t 2


− (

2α+ 2λ2 − η

η
)F1(T ),

(15)

where (b) uses Lemma B.4. Substituting this into (14), we obtain:

T

t=1

xt + ht

w + 1
− τt2 + λ1 ft(xt − ut) + λ2xt − xt−12

≤
 T

t=1

λ1ft(x
∗
t − ut)


− 2α+ 2λ2 + η − η

η
F1(T )

+ (1 +
1

β
)

 T

t=1

x
∗
t + h∗

t

w + 1
− τt2


+ λ2(1 +

λ2

α
)

 T

t=1

x∗
t − x∗

t−12


+


2α+ 2λ2 + 2(1 + β)w2(w + 1)2 − η

2

 T

t=1

xt − x∗
t 2



≤ max1 + 1

β
, 1 +

λ2

α
 Cost(OPT, I)

− 2α+ 2λ2

η
F1(T ) +


2α+ 2λ2 + 2(1 + β)w2(w + 1)2 − η

2

 T

t=1

xt − x∗
t 2


 (16)

The additive terms would be non-positive if the following inequality holds:

2α+ 2λ2 + 2(1 + β)w2(w + 1)2 − η ≤ 0 (17)

This implies that if condition 2w2(w + 1)2 < mλ1 + 2(w + 1)2 holds, the competitive ratio of
the adversarial aware algorithm is upper bounded by:
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CR(IGA) ≤ 1 +
2(λ2 (w + 1)2 + w2)

mλ1(w + 1)2 − 2(w2 − 1)
 (18)

B.2 Proof of Theorem 3.2

Proof. We know the adversarial cost function ft() is m-strongly convex. The cost function at time
step t, Costt(xt, ht) = xt+ht

w+1 − τt2 + λ1ft(xt − ut) + λ2xt − xt−12 is η-strongly convex
where η can be calculated as follows:

η =
2

(w + 1)2
+m · λ1 + 2λ2

Consider the following function:

gt(u) =min
x

xt + ĥt

w + 1
− τt2 + λ1ft(xt − u) + λ2xt − x̂t−12

By the process of selecting xt by BEST and the fact that function ft() in minimized at the origin, we
reach that u = xt is the minimizer of the gt(u). From Lemma B.3, gt(u) is η2 = mλ1(1− m·λ1

η )-
strongly convex. So by the strong convexity of gt() we get:

xt + ĥt

w + 1
− τt2 + λ1ft(xt − xt) + λ2xt − x̂t−12 +

η2
2
xt − ut2

≤  x̂t + ĥt

w + 1
− τt2 + λ1ft(x̂t − ut) + λ2x̂t − x̂t−12 (19)

Also the function F2(h) = xt+h
w+1 − τ 2 is 2

(w+1)2 -strongly smooth, so for any 0 < δ0 we have:

1

(1 + δ0)
xt + ht

w + 1
− τt2 ≤ xt + ĥt

w + 1
− τt2 +

1

δ0(w + 1)2
ĥt − ht2, (20)

Also, from Proposition B.1, for any 0 < δ1 we have:

1

1 + δ1
ft(xt − ut) ≤ ft(xt − xt) +

ℓ

2δ1
ut − xt2, (21)

In addition the function F3(x) = λ2xt − x2 is 2λ2-strongly smooth, so for any 0 < δ2 we have:

λ2

(1 + δ2)
xt − xt−12 ≤ λ2xt − x̂t−12 +

λ2

δ2
x̂t−1 − xt−12 (22)

By replacing (21), (20), and (22) into (19), we get:

1

1 + δ0
xt + ht

q + 1
− τt2 +

λ1

1 + δ1
ft(xt − ut) +

λ2

1 + δ2
xt − xt−12

− 1

δ0(w + 1)2
ĥt − ht2 −

λ1ℓ

2δ1
ut − xt2 −

λ2

δ2
x̂t−1 − xt−12 +

η2
2
ut − xt2

≤  x̂t + ĥt

w + 1
− τt2 + λ1ft(x̂t − ut) + λ2x̂t − x̂t−12
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Which gives us:

1

1 + δ0
xt + ht

q + 1
− τt2 +

λ1

1 + δ1
ft(xt − ut) +

λ2

1 + δ2
xt − xt−12

≤  x̂t + ĥt

w + 1
− τt2 + λ1ft(x̂t − ut) + λ2x̂t − x̂t−12

+
1

δ0(w + 1)2
ĥt − ht2 + (

λ1ℓ

2δ1
− η2

2
)ut − xt2 +

λ2

δ2
x̂t−1 − xt−12

By getting sum over different time slots from both sides and using Lemma B.2 we get:

T

t=1


1

1 + δ0
xt + ht

q + 1
− τt2 +

λ1

1 + δ1
ft(xt − ut) +

λ2

1 + δ2
xt − xt−12



≤
T

t=1


 x̂t + ĥt

w + 1
− τt2 + λ1ft(x̂t − ut) + λ2x̂t − x̂t−12



+
1

δ0(w + 1)2

 T

t=1

ĥt − ht2

+


λ1ℓ

2δ1
+

λ2λ
2
1ℓ

2

δ2η2
− η2

2

 T

t=1

ut − xt2

 (23)

where the inequality is derived by applying x̂t = x(ut, ĥt) and xt = x(xt, ĥt) in Lemma B.2.
Combining this with Lemma B.4, we also obtain:

T

t=1

ĥt − ht2 ≤ w2

 T

t=1

x̂t − xt2


≤ w2λ2
1ℓ

2

η2

 T

t=1

ut − xt2

 (24)

By replacing (24) into (23) we get:

min 1

1 + δ0
,

1

1 + δ1
,

1

1 + δ2
 Cost(BEST, I)

≤ Cost(IGA, I) + (
λ2
1ℓ

2

δ0η2
+

λ1ℓ

2δ1
+

λ2λ
2
1ℓ

2

δ2η2
− η2

2
)

 T

t=1

ut − xt2

 (25)

By selecting values for δ0, δ1, and δ2 as

δ0 = δ1 = δ2 =
λ1ℓ(η

2 + 2λ1ℓ(1 + λ2))

η2 · η2
,

the degradation factor of BEST will be upper bounded as follows:

DF(BEST, IGA) ≤ 1 +
ℓ(η2 + 2λ1ℓ(1 + λ2))

mη(η −mλ1)


B.3 Proof of Theorem 4.3

Proof. Let define the error of prediction of adversarial target at time step t as follows:

et := ut − ût

We prove this theorem by constructing a specific instance of the problem. Consider the target
trajectory ut and the adversarial target trajectory τt defined as follows:

ut = u0, (26)

τt = u0 + emin · u0

u0
, (27)
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Figure 4: Coordinates of actual and predicted targets used in the proof of Theorem 4.3.

where u0 is an arbitrary time-independent target, and emin is constant which satisfies
emin ≤ min

t
et

Now, suppose that the predicted value of ut satisfies the following condition:

ût = ut + et ·
u0

u0
; (28)

see Figure 4 for an illustration.

Under this setup, the cost incurred by IGA is upper-bounded as:

Cost(IGA, I0) ≤ λ1

T

t=1

ft(τt − ut), (29)

where this bound is attained when IGA selects τt at every time step.

On the other hand, the cost incurred by PGA satisfies the following lower bound:

Cost(PGA, I0) ≥ λ1

T

t=1

ft(x̃t − ut) (30)

Given (27) and (28), there exists a positive constant αt such that, for every time step t, we can express
x̃t as:

x̃t = (1 + αtλ1)τt (31)
Note that, when λ1 gets very small values, x̃t converges to τt. Substituting this into (30) gives:

Cost(PGA, I0) ≥λ1

T

t=1

ft(τt − ut) +
λ1m

2

T

t=1

∥et − emin∥2  (32)

Substituting (29) into (32) gives:

Cost(PGA, I0)
Cost(IGA, I0)

≥ 1 +
m

T
t=1 et − emin2

2
T

t=1 ft(τt − ut)
= 1 +

mλ1

T
t=1 et − emin2

2λ1

T
t=1 ft(emin · u0u0)

 (33)

and limiting emin → 0 completes the proof.

B.4 Proof of Theorem 4.4

Proof. We begin by analyzing the performance of CoRT under fully adversarial predictions, highlight-
ing the robustness of CoRT. Let x̃t and xt denote the actions of CoRT and BEST, respectively, at time
step t. By Proposition B.1 and Lemma B.2, for any positive parameter δ, we have

T

t=1


x̃t + h̃t

w + 1
− τt



2

≤
T

t=1

(1 + δ)


xt + ht

w + 1
− τt


2
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+

T

t=1


1 +

1

δ


1

(w + 1)2

x̃t + h̃t − xt − ht


2

≤
T

t=1

(1 + δ)


xt + ht

w + 1
− τt


2

+

T

t=1


1 +

1

δ


∥x̃t − xt∥2 , (34)

where the last inequality uses Lemma B.4. Similarly, for the regularization term, we have

T

t=1

λ2 ∥x̃t − x̃t−1∥2 ≤
T

t=1

(1 + δ)λ2 ∥xt − xt−1∥2 +
T

t=1


1 +

1

δ


λ2 ∥x̃t − x̃t−1 − (xt − xt−1)∥2

≤ (1 + δ)

T

t=1

λ2 ∥xt − xt−1∥2 + 4(1 +
1

δ
)λ2

T

t=1

∥x̃t − xt∥2  (35)

Since ft(·) is ℓ-strongly smooth, we have

λ1ft(x̃t − ut) ≤λ1ft(xt − ut) +
ℓλ1

2
∥x̃t − xt∥2 + λ1ft(xt − ut) · (x̃t − xt) (36)

By combining (34), (35), and (36), for any instance input I , we obtain

Cost(CoRT, I) ≤ (1 + δ) Cost(BEST, I) +

1 +

1

δ


1 + 4λ2 +

ℓλ1

2

 T

t=1

∥x̃t − xt∥2

+λ1

T

t=1

ft(xt − ut) · (x̃t − xt)

Moreover, since ft(·) is ℓ-strongly smooth, it follows that

∥ft(xt − ut)∥ ≤ ℓ ∥xt − ut∥ , (37)

which implies

Cost(CoRT, I) ≤ (1 + δ) Cost(BEST, I) +

1 +

1

δ


1 + 4λ2 +

ℓλ1

2

 T

t=1

∥x̃t − xt∥2

+λ1ℓ

T

t=1

∥xt − ut∥ · ∥x̃t − xt∥

≤ (1 + δ) Cost(BEST, I) +

1 +

1

δ


1 + 4λ2 +

ℓλ1

2

 T

t=1

∥x̃t − xt∥2

+λ1ℓ

T

t=1


1

α
∥xt − ut∥2 + α ∥x̃t − xt∥2


, (38)

where α is an arbitrary positive constant. In addition, for BEST we have:

Cost(BEST, I) ≥ λ1

T

t=1

ft(xt − ut) ≥
mλ1

2

T

t=1

xt − ut2 (39)

Also, based on Lemma B.2, we have
T

t=1

∥x̃t − xt∥2 ≤ (
λ1ℓ

η
)2

T

t=1

∥xt − ũt∥2 ≤ (
λ1ℓθ

η
)2

T

t=1

D2
t

≤ (
λ1ℓθ

η
)2

T

t=1

∥xt − ut∥2 ≤ 2λ1ℓ
2

mη2
θ2 Cost(BEST, I), (40)
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By combining (40), (39), and (38), we obtain

Cost(CoRT, I) ≤

1 + δ +

λ1

α
+


(1 +

1

δ
)(1 + 4λ2 +

ℓλ1

2
) + αλ1ℓ(

λ1ℓ

η
)2

θ2

Cost(BEST, I),

(41)

Moreover, as θ → 0, CoRT converges to BEST. This implies

DF(CoRT, IGA) ≤ DF(BEST, IGA)

1 + θ2O(1)


 (42)

Next, we proceed to analyze the performance of CoRT under perfect prediction (Consistency analysis).

Let xt denote the action of IGA at time step t. Under perfect prediction conditions, we have ût = ũt.
In such a case, if ∥ut − xt∥ ≤ Dt, the actions of IGA and CoRT coincide. Thus, in order to maximize
the gap between the performance of CoRT and IGA, in the worst case scenario, Iworst, an adversary
must select targets such that the following inequality holds:

Dt ≤ ∥ut − xt∥  (43)

Based on Assumption 4, u0 and x0 are identical initially, implying D1 = 0. Combining this with the
above inequality, we conclude that, in the worst-case scenario, the following relation holds:

Dt = ∥ut−1 − xt−1∥ ≤ ∥ut − xt∥ = Dt+1 (44)

Furthermore, by the definitions of xt, x̃t, x̂t, and ut, these points lie along a direct line segment.
Consequently, there exist constants βt  [0, 1] such that

x̃t = βtx̂t + (1− βt)xt (45)

Based on this, using the convexity of cost terms we get:

Costt(CoRT) =  x̃t + h̃t

w + 1
− τt2 + λ1ft(x̃t − ut) + λ2x̃t − x̃t−12

≤ β x̂t + ĥt

w + 1
− τt2 + (1− βt)

xt + ht

w + 1
− τt2

+ βtλ1ft(x̂t − ut) + (1− βt)λ1ft(xt − ut)

+ λ2 βtx̂t − x̃t−12 + λ2(1− βt)xt − x̃t−12

≤ βt
x̂t + ĥt

w + 1
− τt2 + (1− βt)

xt + ht

w + 1
− τt2

+ βtλ1ft(x̂t − ut) + (1− βt)λ1ft(xt − ut)

+ λ2 βtx̂t − x̂t−12 + λ2(1− βt)xt − xt−12

+ λ2βt(
λ1ℓ

η
)2(Dt − θDt−1)

2 + λ2(1− βt)(
λ1ℓ

η
)2θ2D2

t , (46)

where the last inequality holds only for the worst-case instance Iworst, using the fact that, by definition,
the following property holds for Iworst:

θDt ≤ Dt+1, ∀t (47)
ũt − xt = θDt, ∀t (48)
ut − ũt = Dt+1 − θDt, ∀t (49)
ut − xt = Dt+1 ∀t (50)

This yields:

Costt(CoRT, Iworst) ≤ βt Costt(IGA, Iworst)

+ (1− βt) Costt(BEST, Iworst)
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+ λ2(
λ1ℓ

η
)2

D2

t


βt(1−

θDt−1

Dt
)2 + (1− βt)θ

2


 (51)

In addition, we can provide upper bounds on the values of βt and 1− βt as follows:

βt =
∥x̃t − xt∥
∥x̂t − xt∥

≤ λ1ℓ

η
· η

mλ1
· θDt

Dt+1
=

ℓ

m
· θDt

Dt+1
, (52)

1− βt =
∥x̃t − x̂t∥
∥x̂t − xt∥

≤ ℓ

m
·

Dt+1 − θDt

Dt+1


=

ℓ

m
(1− θDt

Dt+1
), (53)

where we used the convexity of the cost function and Lemma B.2 to derive these bounds. These
expressions reveal that when θ is small (i.e., θ → 0), βt also becomes small, indicating that the action
of CoRT closely follows that of BEST. Conversely, as θ grows large (i.e., θ → ∞), βt approaches 1,
and the action of CoRT becomes similar to that of IGA.

Also, since BEST is minimizing the cost value ignoring the adversarial cost at time step t, the cost of
IGA in the worst case instance is lower bounded as follows:

Cost(IGA, Iworst) ≥
T

t=1


xt + ĥt

w + 1
− τt2 + λ2xt − x̂t−12



+ (
η − λ1m

2
)(
mλ1

η
)2

T

t=1

xt − ut2 +
mλ1

2
(
η −mλ1

η
)2

T

t=1

xt − ut2

≥
T

t=1


xt + ĥt

w + 1
− τt2 + λ2xt − x̂t−12



+
mλ1

2η
(η −mλ1)

T

t=1

xt − ut2

≥ mλ1

2η
(η −mλ1)

T

t=1

D2
t+1

=
mλ1

2η
(η −mλ1)

T+1

t=1

D2
t , (54)

where in the last inequality we used the fact that D1 = 0. Combining (51) and (54) yields:

Costt(CoRT, Iworst)

Costt(IGA, Iworst)
≤ βt + (1− βt)

Costt(BEST, Iworst)

Costt(IGA, Iworst)

+

2λ2λ1ℓ
2

T
t=1 D

2
t


βt(1− θDt−1

Dt
)2 + (1− βt)θ

2



mη(η −mλ1)
T+1

t=1 D2
t

, (55)

Note that the latter term increases with θ, and both the numerator and denominator grow at most
quadratically with respect to θ. Its maximum value, as θ → ∞, is bounded by:



2λ2λ1ℓ

2

T
t=1 D

2
t


βt(1− θDt−1

Dt
)2 + (1− βt)θ

2



mη(η −mλ1)
T+1

t=1 D2
t

θ → ∞




≤ 2λ2λ1ℓ
2
T

t=1 D
2
t θ

2

mη(η −mλ1)
T+1

t=1 D2
t

≤ 2λ2λ1ℓ
2

mη(η −mλ1)
 (56)

Finally, the proof follows by noting that βt increases with θ, converging to 0 as θ → 0, and
approaching 1 as θ → ∞.
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(a) Impact of parameter λ2 (b) Impact of daily average of trajectory targets
Figure 5: Impact of λ2 and the daily average of trajectory targets, τt, on algorithm cost. While λ2

significantly affects the normalized cost of the algorithms, the daily average of τt has a minimal
impact.

C Additional Details of Experiments

In this section, we provide additional details of the experimental setup.

C.1 Result of Experiments on Impact of λ2, and τt

Figure 5a illustrates the impact of the switching cost coefficient λ2 on the total cost incurred by the
algorithms. The results show that λ2 influences the cost functions in a manner similar to the weight
parameter w. As λ2 increases, both online algorithms and the offline optimal algorithm are more
heavily penalized for making large changes between consecutive actions. This discourages frequent
switching, leading to smoother action sequences. Consequently, the adversarial cost component
contributes less to the overall cost, resulting in reduced total cost values.

We also evaluate the impact of the daily average value of τt on algorithm performance. Following the
structure described in Section 5, we vary τt across the day by modifying its value during mid-peak
periods and then shifting it by +01 (i.e., 10%) during off-peak and −01 (i.e., 10%) during on-peak
hours. This setup ensures that the daily average of τt matches its value during mid-peak periods.
Results of this analysis, shown in Figure 5b, indicate that the effect of the daily average of τt on the
normalized cost is modest compared to other parameters like λ1, λ2, and w. This limited sensitivity
is intuitive, as we preserve the shape of the τt variation pattern throughout the day and only apply a
uniform shift. Note that this analysis focuses solely on the impact of daily average τt on algorithm
cost; exploring its influence on other metrics—such as the average allocation to elastic or inelastic
workloads—is left for future work.

C.2 More Detail on the LSTM Predictor Used in Section 5

Figure 6: Prediction error ∥ut − ût∥ over time steps.
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To estimate the adversary’s target ut at each time step in an online fashion, we implement an LSTM-
based regression model that learns the temporal dependencies in the observed sequence of u values.
Specifically, we train a one-layer Long Short-Term Memory (LSTM) network followed by a fully
connected linear layer. The LSTM model receives a sliding window of the previous W observations
ut−W ,    , ut−1 and predicts the next value ût.

Our architecture consists of:

Input layer: A sequence of W = 10 scalar values, each representing the observed ut at previous
time steps.

LSTM layer: A single-layer LSTM with hidden size 32, which processes the input sequence and
outputs a hidden state vector representing the temporal features of the sequence.

Output layer: A linear layer of size 32 → 1 that maps the last hidden state to the final prediction ût.

We train the model incrementally in an online manner, using a single gradient update per time step.
The model is optimized using the Adam optimizer with a learning rate of 10−2. The training is
performed in real-time as new data arrives, making the approach suitable for dynamic and non-
stationary environments.

Figure 6 shows the prediction error (∥ut − ût∥) over time for the first 5,000 steps. The results
demonstrate that the LSTM network achieves a high level of accuracy in predicting ut. Specifically,
the average prediction error across the entire horizon is 001, with a standard deviation of 004.
Owing to this high accuracy, the performance of PGA-Predictor and CoRT-Predictor closely matches
that of PGA-Optimistic and CoRT-Optimistic reported in Section 5.
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