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Abstract

We present the first learning-augmented data structure for implementing dictionaries with optimal
consistency and robustness. Our data structure, named RobustSL, is a skip list augmented by
predictions of access frequencies of elements in a data sequence. With proper predictions, RobustSL
has optimal consistency (achieves static optimality). At the same time, it maintains a logarithmic
running time for each operation, ensuring optimal robustness, even if predictions are generated
adversarially. Therefore, RobustSL has all the advantages of the recent learning-augmented data
structures of Lin, Luo, and Woodruff (ICML 2022) and Cao et al. (arXiv 2023), while providing
robustness guarantees that are absent in the previous work. Numerical experiments show that
RobustSL outperforms alternative data structures using both synthetic and real datasets.
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1 Introduction

Dictionaries are one of the most studied abstract data types with a wide range of applications, from
database indexing [4] to scheduling in operating systems [19]. In the dictionary problem, the goal is to
maintain a set of n items, each represented with a key, so as to minimize the total cost of processing
an online data sequence of operations, each involving access, insertion, deletion, or other operations
such as successor and range queries. Here, the cost refers to the number of comparisons made for all
operations, and amortized cost is the average cost of a single operation over the input sequence.

There are several data structures to implement dictionaries. Hash tables are efficient and practical
data structures that are useful in many applications. However, hash tables do not efficiently support
operations like successor and rank/select queries [13]. In comparison, binary search trees (BST) and skip
lists keep items sorted and thus support queries that involve ordering items with minimal augmentation.
Classic BSTs such as red-black trees, AVL trees, treaps, and classic skip lists support dictionary
operations in O(log n) time, which is optimal for a single operation. For a sequence of m operations in
a data stream, however, these structures are sub-optimal as they do not react to the access patterns in
the input. For example, an input may be formed by m requests to a leaf i of a balanced BST, giving it
a total cost of Θ(m log n), while a solution that first moves i to the root has a cost of Θ(m+ log n).
The same argument can be made by making requests to a key replicated once at the deepest level of a
skip list. Splay trees [21] are self-adjusting BSTs that move each accessed item to the tree’s root via a
splay operation. Splay trees are statically optimal, meaning their cost is proportional to an optimal
data structure that does not self-adjust. Nevertheless, as pointed out by Lin et al. [13] and Cao et al.
[6], the constant multiplicative overhead involved in pointer updates in the splay operations makes
them impractical in many applications.

In recent years, there has been an increasing interest in augmenting algorithms that work on data
streams with machine-learned predictions. The objective is to design solutions that provide guarantees
with respect to consistency, the performance measure when predictions are accurate, and robustness,
the performance measure when predictions are adversarial. For dictionaries, Lin et al. [13] presented
an augmented treap data structure that uses frequency predictions. In a classic treap, each item is
assigned a random priority that defines its location in the tree. In the work of Lin et al. [13], these
random priorities are replaced with machine-learned frequency predictions. Under the “random-order
rank” assumption, which implies all keys have the same chance of being the i’th frequently asked
key (for any i ≤ n), the resulting data structure offers static optimality with accurate predictions (is
optimally consistent) and is robust in the sense that the expected cost of all operations in O(m log n).
When the ranks are not random, however, the resulting data structure is not consistent nor robust
(§2.3, Proposition 2.2). Cao et al. [6] have recently proposed an alternative priority assignment that
results in a learning-augmented treap that is statically optimal with accurate predictions without the
random-order rank assumption. Nevertheless, we show that their structure is also vulnerable when
predictions are adversarial and thus is not robust (§2.3, Proposition 2.3).

Contributions. This work introduces RobustSL, a learning-augmented data structure that utilizes
frequency predictions and achieves optimal consistency and robustness. Our primary contributions are
delineated as follows:

• In § 3.1, we presented RobustSL, a skip list that replicates each item, given its predicted frequency,
based on two factors. First, a deterministic factor is calculated based on the predicted frequency
of the item using a classification approach that ensures items with similar predicted frequencies
receive a comparable number of replicas within the skip list. In particular, including this factor
guarantees that items with higher predicted frequencies obtain more expected number of replicas,
thereby optimizing the structure’s performance. The second factor is a randomized factor added
to the deterministic one. The intuition behind this factor is similar to classic skip lists: adding a
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random “noise” to the number of replicas to ensure efficient list navigation when searching for an
item. The deterministic replication process ensures consistency, whereas the stochastic mechanism
fortifies the robustness of RobustSL.

• We then analyze the consistency and robustness of RobustSL. Theorem 3.3 establishes consistency
of the RobustSL by revealing that under perfect frequency predictions, the anticipated access cost
for an item i within RobustSL is proportional to the logarithm of its predicted frequency, which is a
consequence of the deterministic replication mechanism. This relationship confirms that the access
cost for an input sequence is a constant factor away from the entropy of the input, thus proving the
optimal consistency of RobustSL. Additionally, our analysis demonstrates that the maximum cost of
access to any item in RobustSL remains within O(log n), substantiated by the stochastic replication
mechanism), solidifying the structure’s assured optimal robustness (Theorem 3.4).

• In §4, we conduct comprehensive experimental comparisons between RobustSL and other dictionary
data structures using synthetic and real datasets. Our experimental findings align closely with
theoretical analysis, demonstrating that data structures such as learned treaps exhibit satisfactory
performance for inputs with highly accurate predictability. However, their performance is significantly
worse when predictions are erroneous. In comparison, RobustSL achieves comparable performance
with accurate predictions and remains robust even for highly erroneous predictions.

2 Preliminaries

We use [n] to denote the set {1, 2, . . . , n} and assume keys in the dictionary come from universe [n].
We use m to denote the number of operations in the input stream. We also let fi denote the frequency
of operations involving key i ∈ [n] in the input, and f̂i denote the predicted frequency for queries to
i (

∑
i fi =

∑
i f̂i = 1). We let f , and f̂ denote the vectors of actual and predicted frequencies. Let

ei ∈ [n] be the item with rank i; that is, the i’th most frequently-accessed item in the input. Finally, we
use OperationD(i) to denote the number of comparisons for applying an operation (the “Operation”)
involving key i ∈ [n] in a data structure D. For example, SearchD(i) is the number of comparisons for
accessing i in D.

2.1 Dictionaries and Optimality

Consider an online stream of operations concerning a set of n items, forming a dictionary. The operations
mainly require accessing, inserting, and deleting items, while secondary operations such as rank, select,
range-query, successor, and predecessor may need to be supported. Comparison-based data structures,
such as BSTs and skip lists, keep data in order and thus support all operations without relying on
restrictive assumptions on the input distribution. The cost of these data structures for a given input
stream can be measured by the number of comparisons they make for all operations in the input; other
costs, such as pointer updates, are proportional to the number of comparisons. Most comparison-based
data structures, such as balanced BSTs and skip lists, do not change structure after access operations.
Self-adjusting data structures such as splay trees [21], on the other hand, require extra comparisons for
self-adjusting and thus have a constant-factor overhead, which is not desirable in many applications [13].

Mehlhorn [14] showed that the number of comparisons made by any comparison-based data structure
that does not self-adjust, for the input of m operations and frequency distribution f , is at least
mH(f)/

√
3, where H(f) is the entropy of f defined as H(f) = −

∑
i∈[n] fi log(fi). Therefore, one can

use entropy as a reference point for measuring the consistency of learning-augmented structures. In
particular, we say that a structure is statically optimal if its cost for any instance I is O(H(f)). In
particular, the weight-balanced BST of Knuth [9] and its approximation by Mehlhorn [14] are statically
optimal.
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To measure robustness, i.e., performance under adversarial error, we note that, regardless of the
structure comparison-based structure, there are access requests that require at least ⌈log n⌉ per access
due to the inherent nature of binary comparisons. Therefore, when predictions are adversarial, there are
worst-case input sequences in which every access request takes at least ⌈log n⌉ comparisons (Ω(m log n)
cost for a sequence of m operations). From the above discussions, we define our measures of optimality
as follows.

Definition 2.1 (Optimal consistency and robustness). An instance I = (σ,f , f̂) of the dictionary
problem with prediction includes a sequence σ of m operations on n keys, an unknown vector f
specifying frequency (probability) of keys in σ, and a known vector f̂ of predicted frequencies. A
learning-augmented data structure has consistency c iff its total number of comparison is c ·H(f) for
any input instance with f = f̂ . In particular, it is optimally consistent, or statically optimal, if its
consistency is O(1). Similarly, a learning-augmented data structure is r-robust iff its total cost is at
most r.m for any instance. In particular, it is optimally robust iff it has robustness O(log n) for a
dictionary with n items.

Consistency and robustness are not always inherently conflicting attributes, yet achieving one often
necessitates compromising the other, as observed in prior research [1, 2, 23, 12, 22]. Attempts to attain
optimal consistency have often resulted in a trade-off that undermines robustness and vice versa. Within
the literature [9, 6, 13], several data structures have been proposed with an emphasis on optimizing
consistency, showcasing exceptional performance under ideal predictive conditions. However, this pursuit
of high consistency tends to render these structures less robust when faced with adversarial predictions.
Conversely, other data structures, such as balanced BSTs and AVL tree, prioritize bolstering their
robustness, particularly under worst-case scenarios, thereby offering enhanced resilience. In light of
these results, one might ask whether it is possible to get the best of the two worlds: optimal consistency
and robustness at the same time. We answer this question in the affirmative in this paper.

2.2 Treaps and Skip Lists

A treap is a binary search tree where items has additional field which is its priority. In addition to
binary search tree property, a treap follows the heap property. In a classic random treap [20], priorities
are assigned randomly, allowing them support dictionary operations in expected O(log n) time, i.e.,
they are optimally robust. On the other hand, random treaps are not optimally consistent due to a
lack of information about access frequencies. When frequency predictions are available, it is natural to
define priorities based on frequencies rather than randomly. These ideas were explored in [13, 6] to
define learning-augmented treaps (see §2.3).

Skip lists, introduced by Pugh [18], are randomized data structures that provide all functionalities
of balanced BSTs on expectation. A skip list is a collection of sorted linked lists that appear in levels,
where all dictionary items are present in the lowest level, and a subset of items at each level are
selected randomly and independently to be replicated in the above layer. The random decisions follow
a geometric distribution, ensuring an expected O(1) replicas per key. Each replica has a “right pointer”
to the next item in the its linked-list, and a “bottom pointer” to the replica of the same item in the
level below. The top list is said to have level 1, and the level of any other list is the level of its top list
plus 1. The “height” of skip lists, is defined as the number of levels in it, and “depth” of a specific item,
is the least level number at which the item appears.

Previous work has established a tight relationship between skip lists and trees. For example, a
skip list can simulate various forms of multiway balanced search trees (MWBSTs) such as B-trees, and
(a,b)-trees [17, 15, 3]. On the other hand, Skip trees [16] are MWBSTs that certify one-to-one mapping
between MWBSTs and skiplists. It is also possible to represent any skip list with a BST [8, 5].
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2.3 Learning-augmented Treaps

In the learning-augmented treaps proposed by Lin et al. [13], priorities are not random but instead
predicted frequencies. Under a random-order rank assumption, which requires that items’ ranks to
be a random permutation of [n], these treaps are optimally-consistent and have bounded robustness.
However, these treaps are not optimally consistent nor robust when the random-order rank assumption
does not hold. In particular, when the predicted frequency distribution is highly skewed, the resulting
treap may resemble a linear list, which is clearly neither robust nor consistent, as shown in the following
proposition.

Proposition 2.2 (Appendix §A.1). Without random-order rank assumption, the consistency of learning-
augmented treap of Lin et al. [13] for dictionaries of size n is at least Ω(n/ log n), and its robustness is
n.

Lin et al. [13] present a method for relaxing the random-rank assumption by bijecting each
key in the dictionary to a random key in a secondary dictionary maintained by a treap based on
predicted frequencies. This simple solution, however, shuffles the keys, and the resulting tree is not
ordered. Therefore, one cannot efficiently answer secondary dictionary such as predecessor and successor
operations using these shuffled treaps.

Recently, Cao et al. [6] introduced a different learning-augmented treap, in which a random
element is introduced in priority assignment. Precisely, the priority of the node with key i is defined
as prii = δi − ⌊log2 log2 1/f̂i⌋, δi ∼ U(0, 1), where U(0, 1) is the uniform distribution over interval
[0, 1]. The total number of comparisons is proved to be O(m · Ent(f , f̂)), where Ent(f , f̂) is the
cross entropy between f and f̂ defined as Ent(f , f̂) = −

∑
i∈[n] fi log f̂i. When fi = f̂i, it holds

that Ent(f , f̂) = H(f), and the total number of comparisons will be O(mH(f)), ensuring optimal
consistency for these treaps. However, when predictions are adversarial, these treaps are not robust, as
shown in the proposition below.

Proposition 2.3 (Appendix §A.2). The learning-augmented treaps of [6] have optimal consistency (are
statically optimal), but their robustness is n.

Intuitively, regardless of the amount of randomness (noise) added to the priorities, an adversary can
skew the predicted frequency distribution to negate the added random noise. For that, it suffices to
define f̂i’s in a way to ensure f̂i ≥ f̂i−1 + u, where u is the upper bound for the random variable added
to the priority.

In other words, regardless of the priority assignment, the treap will be either fully random by
ignoring predictions, hence non-consistent, or not robust against adversarial predictions. This suggests
that, in order to achieve optimal consistency (static optimality) and robustness simultaneously, one must
consider data structures other than treaps.

3 Consistent and Robust Dictionaries

This section presents our main results on learning-augmented dictionary data structures: a skip list
that achieves optimal consistency (statically optimal) when predictions are correct and offers robustness
of O(log n) when predictions are adversarial.

If one wants to maintain a static dictionary, without the support of insertions and deletions, it
is rather easy to achieve a consistent and robust data structure as follows. Provided with predicted
frequencies f̂ , first, build the static optimal tree of Knuth [9] in O(n2); call the resulting tree optimistic
tree To. Also, form a balanced BST To, referred to as pessimistic tree. To access an item with key i,
we simultaneously search for i in To and Tp. When one tree finds the item, we immediately stop the
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searching process of another tree. The number of comparisons would be 2min(SearchTo(i), SearchTp(i)),
ensuring both static optimality and optimal robustness of O(log n).

However, this simple data structure does not support insertion and deletion queries, as Knuth’s
static optimal tree lacks support for these operations. In practice, the predicted frequencies get updated
frequently, and such updates are implemented by deletion and insertion, necessitating a dynamic
dictionary that supports insertions and deletions. Moreover, the time complexity of constructing the
optimistic tree is expensive, rendering it impractical for widespread use.

In what follows, we first present RobustSL in Section 3.1. In Section 3.2, we show that RobustSL
achieves optimal consistency and robustness. Last, in Section 3.3, we discuss extensions, such as how
RobustSL can be augmented to efficiently support secondary operations like the predecessor, successor,
rank, select, and range queries.

3.1 RobustSL, Consistent and Robust Skip list

RobustSL is a skip list, and many of its functionalities are similar to a regular skip list. In particular,
upon insertion of an item with key i, it replicates the item in a certain number of levels (each associated
with a linked list) starting at the lowest level. Unlike a regular skip list, where the replication strategy
is purely randomized, RobustSL involves predicted frequencies in its replication strategy. As we will
show, the number of replicas for item with key i in RobustSL is a function of its predicted frequency
and a geometric random variable. The key to achieving optimal consistency and robustness in RobustSL
lies in the precise classification of items based on their predicted frequencies. The goal is to assign
more replicas (lower “depths”) to items with higher predicted frequencies, while items with similar
predicted frequencies share the same expected depth, ultimately reinforcing the consistency of RobustSL.
Importantly, RobustSL ensures that maximum number of comparison made while searching any item is
at most O(log n), ensuring optimal robustness.

Before presenting RobustSL formally, we present some intuitions behind it via a simpler data
structure that illustrates the main ideas behind RobustSL.

High-level intuitions and ideas. Let’s assume a number of items in the dictionary, n, is fixed
(this assumption will be relaxed later in Section 3.3). We classify items such that items with predicted
frequency larger than 1/2 belong to the first class (index 0), those with predicted frequency in (1/4, 1/2]
belong to class index 1, and more generally, items with predicted frequency in (1/22

c+1
, 1/22

c
] belong

to class c. We further limit the number of classes into K = ⌈log logn⌉; that is, items with frequency
smaller than 1/n belong to class K. Maintain a separate skip list for items of each class, and, to search
for any item with key i, first examine the skip list maintained for the first class, and in case of not
finding i, we examine the skip list for classes 1, 2, . . . ,K in the same order.

We show that searching for an item in class c takes no more than α ·2c+1 comparisons on expectation
for some constant α. To see that, let Nc denote the number of items in class c. Observe that at most
2(2

c+1) items belong to class c (i.e., Nc ≤ 2(2
c+1)); otherwise, the total predicted frequencies for items in

class c exceeds 1. Therefore, searching for an item in the skip list of class c takes the expected time of
α logNc ≤ α2c+1. Now, if i is assigned to class index c, the total expected number of comparisons for
finding i would be

∑
c′≤c α2

c′+1 < α2c+2. The robustness of the data structure is direct from the fact
that c ≤ K = ⌈log logn⌉, and thus searching any item takes at most 4α2K = O(log n). For consistency,
when predictions are accurate, we note that if an item with key i is assigned to class c, then it holds
that fi = f̂i ≤ 2−2c , which is direct from the way classes are defined. Thus, the expected number of
comparisons for finding i would be α · 2c+2 ≤ −4α · log f̂i. We can conclude that searching for i takes
O(− log fi), proving our algorithm’s consistency.

RobustSL improves the above data structure in a few ways. First, it maintains a single skip list for
all classes, which is necessary for efficient handling of frequency updates: when an item’s frequency
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Figure 1: Structure of RobustSL having four classes. Items in lower-indexed classes replicate more. The
replication of items within a class is achieved through a stochastic process.

is updated, it is desirable to update the number of replicas in a single skip list rather than removing
them from one skip list and adding to another. To maintain a single skip list, we ensure that items of
class c form a “layer” above those of class c + 1; this is achieved via defining a “class-base” for each
class, ensuring a minimum number of replicas for class c. Second, instead of using powers of 1/2 in the
classification, RobustSL uses a parameter θ, which is set to optimize the constant for static optimality.

Algorithmic details of RobustSL. Similarly to the data structure described above, RobustSL
classifies items based on their predicted frequencies and employs a two-step process to select the number
of replicas for each item. Firstly, it replicates any item in class c a minimum of D(K)−D(c) times,
where D(c) is an increasing function of c, indicating the maximum possible depth of items in class c.
Given this definition, D(K)−D(c), called class-base(c), determines the minimum number of replicas
for items in that class. Intuitively, items in class 0, which are predicted to appear more in the input,
have a higher class-base, meaning that they are replicated more than other classes; as the indices of
classes increase, their class-base decreases, implying less replication. See Figure 1 for an illustration.

In addition to replicas specified by the class-base, more replications are introduced for each item,
guided by a geometric distribution with a parameter of 1− p, where p < 1 is a constant value. In the
next section, we present the consistency and robustness of RobustSL as a function of p, and show how
this parameter impacts those metrics. This stochastic process for adjusting the number of replicas
ensures that the expected search cost within a class is logarithmic to the number of items in that class.
The following sections explore the classification and replication processes within RobustSL in detail.

Classification approach. The classification of items relies on their predicted frequencies. An item
i with a predicted frequency f̂i is assigned to class ci(≥ 0) as follows. First, items with predicted
frequency ≥ θ belong to class 0. Other items belong to class ci ≥ 1, if their predicted frequency satisfies
the condition:

θ2
ci ≤ max(f̂i, n

log(p)/2) < θ2
ci−1

, (1)

which gives

ci = ⌈log
(
−1
log θ

min

(
− log f̂i,

− log p log n

2

))
⌉,

where θ ∈ (0, 1) is an algorithm parameter. In particular, the largest value of ci is realized for items
with small predicted frequency, where − log f̂i ≤ − log p log(n)/2. These items (if exist) belong to the
class index denoted by K, where

K = 1 + ⌈log logn− log(2 log θ/ log p)⌉.
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Intuitively speaking, parameter θ determines the predicted frequency range for items in the same class.
A smaller value of θ widens the range, which implies fewer classes, while higher θ narrows it, resulting
in more classes. Regardless, the number of classes is bounded by K + 1 = Θ(log log n).

Number of replicas. To determine the number of replicas for an item upon its insertion, RobustSL
first calculates the class-base of the item, which is deterministically defined based on the class of item,
c, and is calculated as D(K) − D(c). We recursively define D(c) as follows. First, for c = 0, we let
D(0) = ⌈log θ/ log p⌉, and for any c > 0, we define:

D(c) = D(c− 1) + ⌈ log θ
log p

2c⌉. (2)

Intuitively, D(c) represents the maximum depth of items belonging to class c, and the above definition
ensures that items in classes larger than c appear at least 2c log θ/log p levels deeper than items of class
c, on expectation. The number of replicas for an item i in class ci is calculated as:

hi = D(K)−D(c) + X (p), (3)

where X (p) is a random variable following a geometric distribution with parameter 1− p. For example,
items of class K (if there is any), which are the ones with the smallest predicted frequencies, are
replicated only based on stochastic replications, X (p), ensuring that they are at the deepest levels of
the skip list. As another observation, for any c < c′, items of class c are replicated in D(c′)−D(c) more
levels, on expectation, than items of class c′. This is consistent with the higher predicted frequencies
for items of class c. Finally, note that items that belong to the same class all have the same expected
number of replicas, ensuring that the data structure resembles a regular skip list for items within the
same class.

3.2 Theoretical Analysis of RobustSL

In what follows, we analyze RobustSL, providing upper bounds on the number of comparisons made
when accessing any item. In particular, we establish the optimal consistency and robustness of RobustSL.
Let c ∈ [0,K] be any class defined by RobustSL; we use Nc to denote the number of items belonging to
class c. If c ≤ K − 1, then for any item i in class c, it holds that f̂i ≥ θ2

c . Consequently, it follows that
Nc · θ2

c ≤ 1, as violating this condition would contradict the requirement that predicted frequencies
form a probability distribution (

∑
i f̂i = 1). Thus, we deduce that Nc ≤ θ−2c , leading to the inequality

logNc ≤ −2c log θ.
The following lemma presents an analysis of the classification and replication mechanisms within

RobustSL, illuminating that beyond the inherent relationship between higher predicted frequencies
and greater heights, items belonging to distinct classes are anticipated to possess varying numbers of
replications.

Lemma 3.1 (Appendix §A.3). For any class index c > 0, the expected number of items of class c that
are replicated at least class-base(c-1) times is less than 1.

This lemma indicates that, while searching for a key i categorized within a specific class, ci, the
expected number of comparisons conducted with items in higher-indexed classes, cj > ci, is significantly
lower than the expected comparisons with items in class c ≤ ci. This property helps RobustSL to access
more frequent items with a lesser number of comparisons. Using this lemma, we can provide an upper
bound from the number of comparisons made while searching for an item i.

Lemma 3.2 (Appendix §A.4). The expected number of comparisons made while searching an item i in
class ci < K is at most 4

p log p log(f̂i). For an item i in class ci = K, the expected number of comparisons
is at most 4 log θ−1

p log p (log n) +O(1).
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Figure 2: Average number of comparisons per query of RobustSL and baseline data structures for
dynamic evaluations under (left) random frequency ordering with perfect predictions, (center) adversary
frequency ordering with noisy predictions, and (right) adversary frequency ordering with different value
of Zipfian parameter. The performance of learned treap is highly impacted by the prediction error,
while RobustSL shows its robustness against noisy predictions. To improve visibility, the y-axis range
in the right figure is limited to 25, with actual values displayed next to bars exceeding this threshold
for clarity.

The above lemma bounds the cost of access to any item based on their predicted frequencies. In the
following, we establish the consistency of RobustSL, which follows from Lemma 3.2, noting the number
of comparisons for an item i of frequency fi = f̂i is proportional to log(fi) for all classes, including class
K.

Theorem 3.3 (Appendix §A.5). The consistency of RobustSL can be established as −4
p log(p) = O(1),

ensuring the static optimality for RobustSL.

The following lemma is direct from Lemma 3.2, by noting that the maximum number of comparison
made while searching for items belong to class K.

Theorem 3.4 (Appendix §A.6). The maximum cost of searching for items within RobustSL is O(log n),
which makes RobustSL optimally-robust.

3.3 Discussion and Extensions

Dynamics of RobustSL. The results in the previous section assume a fixed value of n. The actual
number of items, denoted by nt, however, is clearly impacted by the insertions and deletions. We explain
how to maintain the described consistency and robustness, using a value of n, which approximates nt

and
represents the parameter utilized by RobustSL for classification (as depicted in Equation (1)). We

maintain a value of n that is always larger than nt. At the beginning, we set n = 4. After any insertion
operation, if nt becomes equal to n, we update n ← n2. After a deletion operation, if nt = n1/4, we
adjust n← max(4,

√
n).

This approach does not compromise the consistency of RobustSL, as nt ≤ n, preserving the
analysis outlined in Theorem 3.3. Additionally, n remains bounded by n < n4

t for any nt > 1, ensuring
log n = O(log nt) consistently. Consequently, the robustness of RobustSL maintains at log n = O(log nt).

By employing this technique, the amortized cost of insertion or deletion operations remains O(log n)
(finding the index of a key in the sorted ordering of all key values requires Ω(log n) number of operations),
as updates to RobustSL occur only after at least n2 consecutive insertions or deletions. It’s important
to note that the maximum cost for entirely reconstructing RobustSL, given its maximum depth as
O(log n), is capped at O(n log n).
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Figure 3: Average number of comparisons per query of RobustSL and the baseline data structures. The
evaluation is conducted by varying three factors: (left) sizes of the adversarial dataset, (center) sizes of
the training dataset, and (right) value of pin RobustSL. Notably, the performance of learning-augmented
treaps demonstrates a significant increase when predicted frequencies are adversarial.

Secondary queries. The order structure of the skip list allows efficient answering of secondary queries
with little augmentation. First, we augment the deepest level of RobustSL to make it doubly linked. We
also add a pointer from any node x, deep(x), to the node with the same key as x at the deepest level.
This allows implementing predecessor(i)/successor(i) (keys before/after i in the sorted order) by
searching for i, finding it at some node x, following deep(x), and probing a left/right pointer; the time
complexity will be similar to the search. Similarly, range(i, j) (reporting all keys k s.t. i ≤ k ≤ j) can
be done by searching for i and following pointers in the deepest level. For other secondary queries, let
pred(x) be the node before x at the same level. We let x have an extra integer field s(x) that specifies
the number of keys that are “skipped” by following the right pointer from pred(x) to x, that is, the
number of keys in the dictionary between the key of pred(x) and i. These augmentations allow efficient
answering of rank(i) (the index of i in a sorted ordering of keys) by searching for i and summing the
values of s(x) over nodes on the search path. Similarly, select(t) (the t’th smallest key) can be done
in O(log n), summing over values s(x) by following the right pointers to reach t.

Proposition 3.5. It is possible to augment RobustSL to answer predecessor(i), successor(i), rank(i),
all in time proportional to Search(i), range(i, j) in time proportional to Search(i) + z, where z is the
output size, and select(t) in O(log n).

4 Experiments

In this section, we evaluate the performance of RobustSL in both static and dynamic settings and
compare the performance with alternatives. Our goal is to investigate the robustness and consistency of
RobustSL under perfect and adversarial predictions.

4.1 Experimental Setup and Overview

We compare RobustSL with several alternative data structures, namely AVL trees, red-black trees, splay
trees, balanced BST (pessimistic BST), and learning-augmented treaps of Lin et al. [13]. We thoroughly
evaluate the robustness and consistency of RobustSL in static and dynamic settings by considering
both perfect predictions and adversarial instances. Specifically, we conduct our experiments in two
categories: (1) dynamic random orders with perfect predictions, and (2) dynamic adversarial orders
with noisy predictions. In addition, we provide further experiments concerning static dictionaries in
Appendix B. In the random order experiments, the frequency ranking of items are randomly selected
concerning the key value ranking of items. In addition, we consider a perfect prediction in random
order experiments to compare the consistency of RobustSL and baseline algorithms. On the other hand,
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the adversarial ranking is used to evaluate the robustness of RobustSL as compared to alternatives and
includes perfect and noisy predictions. For each category, we conduct a series of 100 trials and report
the average number of comparisons for a search query of RobustSL and baseline data structures. More
details on the prediction and error model are given in Appendix§ B. We select θ = 0.05 in RobustSL for
our experiments since it leads to slightly better performance, even though RobustSL is robust to the
selection of this parameter (as shown in Figure 5 in AppendixB.2). In addition, we select p = 0.368 that
minimizes the consistency value presented in Theorem 3.3. Last, we use the following two categories of
synthetic and real datasets.

Synthetic dataset. We conducted experiments to evaluate the performance of RobustSL and baseline
data structures using synthetic datasets of varying sizes. Specifically, we selected the number of unique
keys, n, from the set of values [100, 500, 1000, 2000]. For each value of n, we generated m = 100, 000
search queries with each item appearing according to the Zipfian distribution with a parameter of 2. In
addition, we test the performance of RobustSL and other data structures against Zipfian distribution
with different parameters. For random order experiments and experiments on testing different values of
Zipfian distribution, we fix the number of items to 2000. Our results demonstrate that the performance
of learning-augmented treaps is much worse against the adversary frequency ordering using low-accuracy
predicted frequencies. For a fair comparison between the performance of RobustSL and the baselines
data structures, in experiments with adversarial frequency predictions, we select the number of trials
with high-accuracy predictions up to 99 times of low-accuracy prediction trials. This means that in the
experiments with “adversarial” frequency predictions, 99 trials used high-accuracy predictions, and a
single trial was designed using low-accuracy predictions (see Appendix §B for details).

BBC news article dataset. We also use the BBC news article dataset [11] to evaluate the performance
of RobustSL and other baseline data structures in responding to news article queries [7, 10]. In these
experiments, we select a fraction of the entire dataset to predict item frequencies (training dataset) in
the remaining portion (test dataset). To evaluate data structure performance under noisy conditions,
we artificially generated additional articles using an adversarial approach. These adversarially-generated
articles were designed to align ranking of frequencies with keys. In addition we test the impact of
parameters p and θ on the performance of RobustSL against this dataset. We randomly select 40% of
the entire data as the training dataset, 25% (of the training dataset) as the size of the adversary dataset,
θ = 0.05, and p = 0.368 (as used in synthetic experiments) and conducted experiments by varying
one factor during each experiment while other factors remained fixed. Our analysis considers the top
5500 items with the highest frequencies for dictionary generation, and search queries were exclusively
conducted on these items.

4.2 Experimental Results

Synthetic results. Figure 2 presents the results of our experiments on dynamic structures using
synthetic data, showcasing the average number of comparisons per query for both RobustSL and
baseline data structures under random and adversary settings. While the performance of learning-
augmented treaps is notably impacted by error rates, RobustSL demonstrates consistent and robust
performance, validating its theoretical resilience. Specifically, when searching a dictionary of size 2000,
under random frequency ordering, the average number of comparisons of RobustSL is 24.5% more
than of learning-augmented treaps under random frequency ordering while RobustSL achieves 404.7×
lower comparison per query when the predicted frequencies were adversarial. Notably, we repeated
the adversarial experiments with a higher number of items (e.g., n = 1000), the average number of
comparisons per query slightly increased for all dictionaries, while for learned treaps, it increased to 788,
which confirms the vulnerability of these data structures to errors in prediction. Finally, we replicated
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the same experiment in a static setting, and since the results were very similar to those obtained in
the dynamic setting, we have included the results and additional analysis on static experiments in
Appendix §B.

Dataset results. Figure 3 illustrates the average number of comparisons per query for the compared
data structures, varying size of adversarial and training datasets, and p in RobustSL. Results align
with theoretical analyses and synthetic dataset evaluations. Learned treaps perform well when the
prediction error is low (zero-size adversarial dataset), but their performance significantly deteriorates
under fully adversarial conditions (i.e., when the size of the adversarial dataset is comparable to
the training dataset). In contrast, RobustSL demonstrates consistent performance and robustness
throughout these experiments. When testing the impact of the training sample size, RobustSL shows
significant improvement in its performance (smaller number of comparisons) with a larger training
dataset, while this improvement for learned treaps was much lesser. Finally, testing the impact of
p shows that the performance of RobustSL is optimized when p is around 0.3 supporting theoretical
results. It is worth mentioning that our analysis reveals the impact of θ on the performance of RobustSL
is negligible. The result of this experiment is given in Appendix §B.

5 Conclusion

In this paper, we presented RobustSL, a skip-list-based data structure that achieves optimality with
quality predictions and stays robust with adversarial prediction. As a prospect for future exploration,
adjusting RobustSL’s structure to support the availability of partial information, particularly when
frequency predictions are available only for a subset of items, presents an interesting avenue for future
work. Whether the guarantees provided by RobustSL concerning consistency and robustness can be
achieved with any learning-augmented BST is another open question for future study.
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A Proofs of Theoretical Result

A.1 Proof of Proposition 2.2

Proof. Consider defining the predictions f̂ in a way that all items are predicted to have a frequency
that is almost 1/n with a small additive factor that ensures item i has rank i. More precisely, frequency
of access to item i is f̂i = 1/n+ ϵi (ϵi could be negative), where ϵi < ϵj for any i < j, and

∑
i ϵi = 0

and |ϵi| ≪ 1/n. Given that the key of each item equals its predicted rank, the learning augmented
treap resembles a single path, and its height and robustness are linear to n. Even when predictions are
accurate, treap’s total cost for accesses to item n, which is mf̂n, is at least m/n, and the total cost
for item i is mf̂i = m · i(1/n+ ϵi). The amortized cost for a single request is thus lower bounded by
n∑

i=1
i (1/n+ ϵi) = Ω(n). The cost of the treap for m access operations is thus Ω(mn), while the entropy

of f̂ is O(log n). We can conclude that the consistency of the learned treap is Ω(n/ log n).

A.2 Proof of Proposition 2.3

Proof. Optimal consistency is proven in [Theorem 4.8] [6]. To provide a lower bound for robustness,
consider a highly skewed distribution for the predicted frequency predictions such that log log f̂i ≥
log log f̂i−1 + 1 for any i ∈ [n]. As a result, the random component of the priority, which is in (0,1),
does not make any difference in the rank of items in the resulting tree. That is, the item with key i will
have rank i, and the learned treap will be highly unbalanced, resembling a linear list and therefore, its
robustness is n.

A.3 Proof of Lemma 3.1

Proof. Any arbitrary item from class c can replicate at least class-base(c-1) times only if the number
of additional replications of item i, due to stochastic replications, exceeds a certain lower bound:

D(c)−D(c− 1) =
log θ

log p
2c ≤ X (p).

The probability of this event is less than p
log(θ)
log(p)

2c . Moreover, the maximum number of items in class c is
θ−2c , given that the predicted frequency of items in class c is at least θ2

c . Consequently, the expected
number of items in class c that may potentially replicate at least class-base(c-1) times, denoted as
E[Vioc], is bounded by:

E[Vioc] ≤ plog(θ)2
c/log(p) · θ−2c ≤ 1.

A.4 Proof of Lemma 3.2

Proof. We partition the linked lists in RobustSL into K layers, one layer for each class c as follows. The
layer of class 0 is formed by the lists with depth at most D(0), and for any c ∈ [1,K], the layer of class
c is formed by lists at depth in the range (D(c− 1),D(c)]. Since every item of class c is replicated in at
least D(K)−D(c) lists, it appears in layers of all classes ≥ c+ 1.

To bound the number of comparisons for accessing an item i, we devise an upper bound for the
number of comparisons at any layer c ≤ ci. Comparisons at layer c involve items that are replicated at
D(c) but not at D(c− 1). This is because items replicated at D(c− 1) have been already examined
in previous layers, and upon reaching layer c, the search domain is restricted to 2 consecutive items
among them. Therefore, all comparisons at layer c involve items in class c as well as items from classes
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≥ c + 1 that are replicated at D(c). By Lemma 3.1, the number of these latter items is at most 1,
on expectation. To conclude, at layer c, we have at most Nc + 1 items with a replica at level D(c),
each having further replicas following a geometric distribution with parameter p. In other words, they
resemble a skip list, and searching among them takes at most log(Nc+1)

p log (1/p) < 2 log(Nc)
p log (1/p) , as in a regular skip

list [18].
Therefore, for the total search cost, we can write

E[SearchRobustSL(i)] =
2

p log (1/p)

∑
c∈[0,ci]

log(Nc) (5)

=
2

p log (1/p)

∑
[0,ci]

(−2c log θ) (6)

<
2 log θ

p log p
2ci+1. (7)

When c ≤ K − 1, the right-hand side of the above inequality is at most 4
p log p log(f̂i), which follows

directly from item classification.
When c = K, the total number of comparisons is the sum of comparisons in the layers above K and

the number of comparisons at layer K. The first term is at most
2 log θ

p log p
· 2K ≤ 2 log θ

p log p
· 2(log n+ log θ/ log p);

the first inequality follow from Equation (5), applying ci = K − 1, and the second inequality follows
from the definition of K. Given that there are at most n items in class K, the number of comparisons
at layer K is at most logn

−p log p (as in a regular skip list). Therefore, the total number of comparisons is
at most

≤2 log θ

p log p
2(log n+ log θ/ log p) +

log n

−p log p

=
4 log θ − 1

p log p
(log n) +O(1).

A.5 Proof of Theorem 3.3

Proof. Suppose f = f̂ . According to Lemma 3.2, number of comparison made while searching an item
i in class K is at most

4 log θ − 1

p log p
(log n) +O(1) ≤ 4 log fi

p log p
;

the second inequality from Equation (1). In addition, again by Lemma 3.2, the number of comparisons
made while searching an item i of class ci ≤ K − 1 is bounded by 4 log fi

p log p . Therefore, the total number
of comparisons for the input sequence is at most

∑
i fi ·

4 log fi
p log p , which ensures a consistency of at most

−4
p log(p) .

A.6 Proof of Theorem 3.4

Proof. According to Lemma 3.2 the maximum number of comparison made while searching any item is

max
i

SearchRobustSL(i) = max

(
4

p log p
log(f̂i),

4 log θ − 1

p log p
(log n)

)
= O(log n).

Which shows that RobustSL provides robustness of O(log n), optimal robustness.
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B Additional Details of the Experiments

In this section, we provide additional details of the experimental setup.
Error models play a critical role in the performance of predicted-based data structures such as

RobustSL or learning-augmented treaps. In [13], the authors define an error as the uncertainty in
the frequency of item i. Specifically, the noisy predicted frequency of item i, f̂i, lies in the range
1/∆fi ≤ f̂i ≤ ∆fi, where ∆ is a constant and representative of the error value. However, this error model
suffers from the non-linear impact on the performance of predicted-based data structures. Precisely, for
the mid-range error values, if fi ≤ fj denotes the frequency of item i and item j, then the expected rank
of item i in the predicted ranks is also less than the expected rank of item j. As a result, even predictions
with mid-range error values slightly lower the performance of data structures like learning-augmented
treaps that consider the frequency rankings instead of individual frequency values of items.

To address this challenge, we consider an error model that swaps the ranks of high and low-ranked
items for predictions with very high error values. Let δe be a metric that measures the accuracy of
frequency predictions, where δe = 0 indicates perfectly predicted frequencies and δe = 1 denotes fully
adversarial predicted frequencies. Using this error model, the predicted rank of item i is given by
r̂i = ri × (1− δe) + δe × (n− ri + 1). In other words, the fully adversarial prediction model mirrors
the rankings with respect to the median item. During our experiments, we use δe = 0.01 as the
high-accuracy prediction and δe = 0.9 as the low-accuracy prediction.

Existing data structures often exhibit sensitivity to the order of queries, impacting the efficiency of
search operations and other related tasks. For instance, splay trees demonstrate varying performance
based on the order in which search queries are executed, while the structure of learned treaps is highly
influenced by the frequency ordering of elements. It is our expectation that learned treaps will perform
well in instances with perfect predictions due to their static optimality, while balanced BSTs will
showcase robustness against fully adversarial inputs.

Consequently, we propose an error model that generates fully adversarial input sequences for
prediction-based data structures like learned treaps and optimistic optimal binary search trees. These
fully adversarial input sequences arise when high-frequency items are swapped with low-frequency items
in the prediction result. By incorporating such challenging inputs into our experiments, we aim to
assess the optimal robustness and consistency of RobustSL under diverse conditions.

Dynamic operations during experiments. Experiments on the synthetic dataset involve insert
and delete queries. 80% of the items are randomly selected to be included in the initial data structure,
and the ratio of insert/delete queries to search queries is 20%. Furthermore, insert and delete queries are
randomly interleaved with search queries. The experiments are conducted using two methods: random
order with perfect predictions (δe = 0) and adversarial ranking with noisy predictions.

B.1 Result of experiments under static setting

In the static setting of Figure 4, the frequency ordering of elements is a crucial factor that can
significantly impact the performance of data structures, such as learning-augmented treaps, which take
it into account. When the items are ordered according to the adversarial frequencies, the performance of
learning-augmented treap is severely affected, especially for a large number of unique keys, even though
only 1% of tests included low-accuracy predictions. Results show that testing the dictionary of size
n = 2000, the average number of comparisons of RobustSL is 8.7% more than of learning-augmented
treaps under random frequency ordering while RobustSL achieves 673.7× lower comparison per query
when the predicted frequencies were adversarial. Finally, the result of testing the impact of the Zipfian
parameter on the performance of data structures in the static setting is consistent with the result of the
same analysis under dynamic conditions.
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Figure 4: Average number of comparisons per query for RobustSL and baseline data structures for
static evaluations under (left) random frequency ordering with perfect predictions, (center) adversarial
frequency ordering with noisy predictions, and (right) adversarial frequency ordering with different value
of Zipfian parameter. The frequency ordering of items impacts the performance of learning-augmented
treaps while RobustSL shows its robustness against different conditions. To improve visibility, the
y-axis range in the right figure is limited to 30, with actual values displayed next to bars exceeding this
threshold for clarity.

Figure 5: Average number of comparisons per query applied by RobustSL as a function of θ against
real world dataset. θ shows negligible impact on the performance of RobustSL.

B.2 Testing the impact of θ on performance of RobustSL

Figure 5 shows the impact of θ on the performance of RobustSL against the real world dataset (BBC
news article dataset). Similar to experiments conducted in Section 4.1, 0.368 was selected for parameter
p, 40% of the dataset used as a training dataset, and the size of the adversarial dataset were 25% of the
size of the training dataset. The results shows that value of parameter θ cannot significantly affect the
performance of RobustSL.
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