
LEAD: Towards Learning-Based Equity-Aware
Decarbonization in Ridesharing Platforms

Mahsa Sahebdel1, Ali Zeynali1, Noman Bashir2, Prashant Shenoy1, and Mohammad Hajiesmaili1

1University of Massachusetts Amherst
2Massachusetts Institute of Technology

Abstract

Ridesharing platforms such as Uber, Lyft, and DiDi have
grown in popularity due to their on-demand availability,
ease of use, and commute cost reductions, among other ben-
ets. However, not all ridesharing promises have panned
out. Recent studies demonstrate that the expected drop in
trafc congestion and reduction in greenhouse gas (GHG)
emissions have not materialized. This is primarily due to
the substantial distances traveled by the ridesharing vehi-
cles without passengers between rides, known as deadhead
miles. Recent work has focused on reducing the impact of
deadhead miles while considering additional metrics such
as rider waiting time, GHG emissions from deadhead miles,
or driver earnings. Unfortunately, prior studies consider
these environmental and equity-based metrics individually
despite them being interrelated.

In this paper, we propose a Learning-based Equity-
Aware Decarabonization approach, LEAD, for ridesharing
platforms. LEAD targets minimizing emissions while en-
suring that the driver’s utility, dened as the difference be-
tween the trip distance and the deadhead miles, is fairly dis-
tributed. LEAD uses reinforcement learning to match rid-
ers to drivers based on the expected future utility of drivers
and the expected carbon emissions of the platform without
increasing the rider waiting times. Extensive experiments
based on a real-world ride-sharing dataset show that LEAD
improves fairness by 2× when compared to emission-aware
ride-assignment and reduces emissions by 70% while en-
suring fairness within 66% of the fair baseline. It also re-
duces the rider wait time, by at least 40%, compared to var-
ious baselines. Additionally, LEAD corrects the imbalance
in previous emission-aware ride assignment algorithms that
overassigned rides to low-emission vehicles.

1 Introduction

Road transportation signicantly contributes to global
energy consumption and greenhouse gas (GHG) emis-
sions [8]. Worldwide, the transportation sector is the fourth-
largest source of GHG emissions and is the largest in the
United States [29, 42]. In 2021, transportation accounted
for 37% of global CO2 emissions [17]. That same year,
the United States emitted approximately 5 billion metric
tons of carbon dioxide, accounting for about 13.49% of
global emissions, surpassing the combined emissions of all
28 European Union countries [7]. Due to these environ-
mental impacts, there is an effort towards exploring trans-
portation systems that transport people in an eco-friendly
manner [33].

In recent years, shared mobility options have emerged as
an attractive transport solution, thanks to the widespread in-
tegration of smartphones into daily life. These services en-
able users to access transportation on demand without own-
ing a vehicle [4, 26, 27, 34]. As a result, ridesharing is seen
as a sustainable transportation option that can help reduce
emissions and trafc congestion. Unfortunately, these ex-
pectations have not materialized and ridesharing services
have been linked to increased trafc congestion, higher
emissions, distracted driving, and negative social equity im-
plications [3, 14, 30]. The increase in trafc congestion and
emissions results from two key by-products of ridesharing.
First, ridesharing availability can reduce the use of public
transportation. Second, ridesharing vehicles travel a sig-
nicant fraction of their total miles without a passenger on
their way to pick up a passenger or come back after drop-
ping one [23, 31, 36]. These non-passenger miles are re-
ferred to as deadhead miles. Previous studies show that
deadhead miles can account for 19% to 41% of total miles
while increasing emissions by up to 90% as compared to the
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personal vehicle use [15, 46].
There has been signicant recent work on optimizing the

deadhead miles in ridesharing ecosystems [18, 32] while
considering additional rider-specic metrics such as the
wait time [19, 47] or platform-wide objectives such as GHG
emissions [32, 49]. Other studies aim to enhance over-
all rider satisfaction by minimizing travel costs and wait-
ing times [6, 20, 37]. However, these studies often ignore
fairness from the drivers’ perspective, which can exacerbate
social inequities. The studies from a diver’s perspective typ-
ically focus on enhancing driver satisfaction and operational
efciency by optimizing routes and maximizing a given def-
inition of utility [21, 40]. While some of those studies also
target fairness in earnings across drivers [35], they ignore
the rider’s wait time and system-wide emissions. As a re-
sult, the ride-assignment algorithms proposed by prior can-
not be used in practice to promote sustainable and equitable
growth in ridesharing platforms.

In this work, we consider the problem of holistic ride
assignment that balances the objectives of the system (low
emissions), the driver (fairness in earnings), and the rider
(low waiting time). The goal is to minimize system-wide
emissions, including emissions from ride and deadhead
miles, while maximizing fairness in total utility across all
trips between drivers without impacting the rider’s wait-
ing time. The utility of a trip for a driver is dened as
the trip distance minus the deadhead distance. Given this
setup, [32] and [35] represent our most relevant related
works. In [32], the authors propose an online threshold-
based ride assignment algorithm (TORA) that targets min-
imizing the system-wide emissions while optimizing the
waiting time of the riders. TORA achieves a highly favor-
able tradeoff between emissions (up to 60% reduction) and
rider’s wait time (4% increase). However, to reduce emis-
sions, TORA assigns a disproportionate fraction of rides to
low-emission vehicles, resulting in high unfairness among
drivers. For example, it may assign up to 65% of the rides
to EVs despite them constituting only 25% of the eet.
In [35], the authors propose LAF that targets maximizing
utility, dened as the total revenue generated by the sys-
tem while minimizing unfairness in the driver’s equitable
earnings. While taking a driver-centric approach, LAF com-
pletely ignores system-wide emissions and the rider’s wait
time.

In this paper, we propose the Learning-Based Equity-
Aware Decarbonization (LEAD) algorithm, which aims to
minimize total system-wide emissions and maximize fair-
ness in drivers’ accumulated utilities across trips. To reduce
system-wide emissions, LEAD must consider not only the
drivers that are available at present but also the ones that will
become available in the near future. To do so, LEAD explic-
itly accounts for the dependencies among ride assignments
by using reinforcement learning to develop future-aware

ride assignment strategies. Using a real-world rideshar-
ing dataset, we analyze how LEAD and other representative
baselines [32, 35] perform using metrics, such as the reduc-
tion in emissions, the quality of service for riders measured
as wait time, and fairness for drivers, and how gracefully
they navigate the trade-offs between these metrics. Our con-
tributions can be summarized as follows:

• We frame the problem of ride assignment in rideshar-
ing services (termed RARS) as a bipartite matching
problem and propose a new objective function that
aims to minimize total carbon emissions across all trips
while reducing the gap between utilities of different
drivers.

• We present LEAD, an online learning-based algorithm
that reduces emissions and ensures fairness for drivers,
as measured by utility. To the best of our knowledge,
this is the rst study to leverage the dependencies be-
tween past and future ride assignments to minimize
carbon emissions while ensuring a fair distribution of
utility among drivers.

• We implemented LEAD on a simulation testbed
and evaluated its performance using real data from
RideAustin [28], a nonprot ridesharing service. In
addition, we compare the performance of LEAD with
heuristic and state-of-the-art algorithms used in [32,
35]. Our experimental results show that, in practi-
cal scenarios, our algorithm not only signicantly im-
proves the fairness of utility distribution among drivers
but also substantially reduces emissions, compared to
the current state-of-the-art methods.

2 Related Work

Ridesharing Optimization Approaches. The develop-
ment of ridesharing systems has introduced unique chal-
lenges, with the primary focus being the assignment of ride
requests to drivers. Some challenges in this area include im-
proving vehicle utilization across multiple ride requests and
demands [22, 25, 48], developing algorithms for route plan-
ning [10, 43], and analyzing and integrating temporal and
spatial patterns to predict the arrival time of riders’ requests
[11, 16]. Some other works in this domain also consider dif-
ferent optimization objectives such as maximizing drivers’
prot [2, 45, 51], while others aim to minimize travel costs
[41, 44] or reduce riders’ waiting times [1, 47, 50].

In [18] , authors attempt to reduce trip-level deadhead
miles by leveraging hour-ahead trip demand predictions and
using a heuristic approach to driver assignment. However,
this focus on reducing trip-level deadhead miles does not
always result in a reduction in system-wide deadhead miles
and emissions, as these outcomes also depend on factors
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such as the fuel efciency of vehicles and trafc conditions.
Another work [32] focuses on minimizing emissions from
deadhead miles while also reducing rider waiting times, en-
suring no degradation in user satisfaction. However, a ride
assignment system focused only on reducing emissions can
negatively impact the quality of service (QoS) for riders and
drivers. For instance, prioritizing emission reduction as the
primary objective can lead to a preference for electric or
low-emission vehicles over high-emission ones. This bias
is unfair to drivers with high-emission vehicles, who often
belong to lower-income communities and may face reduced
earning opportunities. Additionally, an emissions-aware
ride assignment may allocate trips with inherently longer
deadhead miles to low-emission vehicles. This increases
the deadhead-to-trip ratio, decreasing these vehicles’ over-
all efciency and service quality.

Another key challenge is the lack of consideration for
the temporal dependencies between current and future as-
signments. This oversight can impact the optimization of
utility and fairness. Many algorithms in this area attempt to
provide theoretical performance guarantees, but they typi-
cally rely on myopic assumptions [47]. For instance, they
frequently neglect the dependency of assignments on past
and future decisions, which can lead to sub-optimal assign-
ments. This shortsightedness fails to account for the dy-
namic and evolving nature of ridesharing systems, where
current ride assignments can signicantly impact future
states and the system’s overall efciency. An effective al-
ternative approach involves leveraging historical data to op-
timize ride assignments alongside integrating reasonable as-
sumptions.

Fairness in Ridesharing. Fairness is a critical factor
in matching scenarios, particularly in multi-sided markets
where preferences play a signicant role [9, 12, 24]. In
the context of ridesharing, recent literature has raised con-
cerns about the fairness of the assignments. Brown et al. [5]
shows the unfair treatment of riders by ridesharing compa-
nies, which leads to higher trip cancellation rates for a few
groups of riders. Another study indicates that income in-
equality among ridesharing drivers may prevent them from
earning a living wage [13]. Another work aims to opti-
mize long-term efciency and fairness in ridesharing plat-
forms through joint order dispatching and driver reposition-
ing [38]. Another recent work [32] showed a trade-off be-
tween reducing carbon emissions and sacricing the fair-
ness of utilities among drivers. Similarly, another study [35]
demonstrated optimization in driver utilities and fairness
without considering emissions. This study used reinforce-
ment learning techniques to evaluate the expected achiev-
able utilities in different city areas. Despite the success of
this approach in ensuring equity among drivers’ utilities, it
did not address eco-friendly ride assignments with low car-
bon emissions.

Ensuring fair assignments in ridesharing systems is chal-
lenging due to drivers’ and riders’ inherent spatiotemporal
dynamics. Drivers can earn varying amounts of utility based
on their assignments, while riders may experience differ-
ing waiting times. These disparities can lead to percep-
tions of unfairness, complicating the assignment process.
To tackle these challenges, our work introduces a new fair-
ness metric for driver earnings that considers the spatiotem-
poral dynamics inherent in ridesharing systems. This metric
is designed to ensure a more equitable distribution of earn-
ings among drivers, considering the dynamic nature of the
system. Building on this metric, we have developed a re-
inforcement learning-based approach assignment algorithm
that reduces carbon emissions while providing a fair distri-
bution of driver utilities compared to the state-of-the-art as-
signment algorithm [32]. The algorithm leverages historical
data and dynamic learning to create effective and equitable
assignment strategies, addressing immediate and long-term
objectives in the ridesharing ecosystem.

3 Problem Formulation

We consider a ridesharing system consisting of a set of
drivers, denoted as V , and a set of ride requests, denoted as
R. In the ridesharing context, a ride r ∈ R is dened as
a request that includes a rider’s pickup location, denoted as
pr, a rider’s dropoff location, denoted as qr, and time of the
request, denotes as cr. A driver v ∈ V in the ridesharing
system is dened by their current location, utility, and the
emissions per mile of the driver’s vehicle ev .

In ridesharing platforms, riders set the pickup and
dropoff locations for a ride request; then, the platform
matches the request to one of the available drivers and es-
timates the trip duration and waiting time based on factors
such as trip distance, trafc congestion, and the distance
between the assigned driver and the rider’s pickup location.
An available driver in the system refers to a driver who is ei-
ther idle or soon to be available within the specied time to
serve a request. The emission associated with a ride request
r is inuenced by the unit emissions of the driver’s vehi-
cle, the deadhead distance, the trip distance, and additional
factors such as trafc congestion, road conditions, etc. For
simplicity, we estimate the carbon emissions produced dur-
ing the servicing of the ride request r by driver v using the
equation below.

Ev,r = (d(D)
v,r + d(T )

r ) · ev, (1)

where ev is the carbon emission per mile of the vehicle of
driver v, d(D)

v,r is the deadhead distance of the trip, and d
(T )
r

is the trip distance which is the distance between rider’s
pickup and dropoff location. The utility of a driver v is de-
ned as the difference between the trip distance and dead-
head distance accumulated across all served ride requests.
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Table 1: Summary of important notations.
NotationDescription
V Set of all drivers
R Set of all ride requests
Vb Set of available drivers during batch b
Rb Set of ride requests in batch b
pr Pickup location of ride request r
qr Dropoff location of ride request r
cr Created time of ride request r
ar,v Dropoff time of ride request r when served by driver v
Ev,r Emission of serving request r by driver v
Uv,r Utility history of driver v before serving ride request r
d
(T )
r Trip distance of ride request r

d
(D)
v,r Deadhead distance of serving ride request r by driver v

dt,D Deadhead distance of tth trip served by the agent
dt,T Trip distance of tth trip served by the agent
VD(s) Value function at state s associated to deadhead distances
VT (s) Value function at state s associated to trip distances

ev
Produced carbon emission per mile of the vehicle of
driver v

The trip distance represents the actual distance driven to ful-
ll the ride request, which contributes to the driver’s earn-
ings. In contrast, the deadhead distance, the distance trav-
eled without carrying a passenger (e.g., traveling from the
driver’s location to the rider’s pickup location), incurs an
overhead cost for the driver beyond the costs incurred dur-
ing the trip, such as fuel expenses. By subtracting the dead-
head distance from the trip distance, we effectively account
for the revenue generated and the overhead cost incurred by
the driver. This approach provides a measure of the driver’s
net revenue, reecting the true utility of a ride to the driver:

Uv,r =


r′∈Vr

(d
(T )
r′ − d

(D)
v,r′) · xv,r′ , (2)

where Uv,r is the cumulative utility of the driver v before
serving ride request r, Vr is the set of ride requests posted
before r, and xv,r ∈ 0, 1 is a decision variable: xv,r = 1
if ride request r is assigned to driver v; 0 otherwise. For
simplicity, we denote the utility of driver v after serving all
requests as Uv .

The ride-assignment problem builds on the classic bipar-
tite matching problem, involving riders and drivers as dis-
tinct sets. The main challenge is modeling the constraints
of available drivers and their costs for new requests, espe-
cially when some drivers are already occupied but may soon
become available to take a ride. Our goal is to design an al-
gorithm that assigns available vehicles to ride requests in
a manner that minimizes emissions while ensuring fairness
among drivers and considering the long-term effects and in-
terdependencies of current assignments on future ones. We
formulate the RARS problem as follows.

[RARS] min Emission− η · Fairness, (3a)

Emission :=


v



r

Ev,r · xv,r, (3b)

Fairness := −max
v

(Uv) (3c)

+min
v

(Uv),

s.t.,


v

xv,r ∈ 0, 1 ∀r, (3d)



r′ ̸=rcr≤cr′≤ar,v
xv,r′ · xv,r = 0 ∀v, r, (3e)

vars., xv,r ∈ 0, 1 ∀v, r. (3f)

where ar,v shows the dropoff time of ride request r when
served by driver v. The term Emission includes trip emis-
sions and deadhead miles emissions. The Fairness metric
is dened as the difference between the minimum and max-
imum utilities of the drivers and is a non-positive metric.
Constraint (3d) ensures that each ride request is assigned
to at most one driver, and constraint (3e) ensures that each
driver is assigned to at most one ride request at each time.
The parameter η ≥ 0 controls the balance between emis-
sions and fairness. Specically, it quanties the increase
in emissions in grams of carbon dioxide (g.CO2) that we
will accept for a one-kilometer decrease in unfairness across
drivers. A higher value of η indicates a greater emphasis on
fairness. A lower value of η prioritizes reducing emissions,
potentially at the cost of sacricing fairness.

4 The LEAD Algorithm

This section introduces the LEAD algorithm that lever-
ages reinforcement learning and batching to accumulate
multiple ride requests that are jointly assigned to ensure that
a long-term system-wide benecial assignment is obtained.
We present the formulation of the single batch matching
problem as an integer linear programming problem whose
objective includes two terms: one for the expected emis-
sion of ridesharing service and the second for the expected
fairness in utility across drivers. To evaluate these expected
values, LEAD employs reinforcement learning to account
for temporal dependencies between current and future ride-
matching. This is essential since the system operates on-
line, with rider requests and driver availability dynamically
changing in real-time.

In the following, we present the details of LEAD, which
consists of two main modules: the Learning Based module
and the Batched Emission Aware Fair Assignment module.
These modules are discussed in detail in Section 4.1 and
Section 4.2, respectively.
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Figure 1: Overview of LEAD. During each batch, LEAD
evaluates the long-term emissions and utilities and uses
them to construct the weighting of the ILP problem of (10).
After solving the optimization problem and matching ride
requests with drivers, LEAD updates the value functions
based on the deadhead and trip distances of the served re-
quests in the batch.

4.1 Learning Expected Emissions and Utility

In the following, we discuss the use of online reinforce-
ment learning to model the impact of current assignments
on future assignments and evaluate the expected deadhead
and trip distances of trips in different regions of the cov-
ered area. Reinforcement learning is a method where agents
learn by interacting with the environment over time. At each
step, the agent takes an action and receives feedback in the
form of utility from the environment. This continuous inter-
action allows the agent to optimize its strategy based on the
utility received, making it well-suited for dynamic and com-
plex systems such as ridesharing, where decisions made at
one point can inuence outcomes in the future. In our work,
the reinforcement learning module consists of the following
elements:

• Agent: Each active driver v in the ridesharing system is
considered as an agent.

• State: The state of driver v during batch b is represented
by the driver’s location lv,b. To facilitate data analysis
and management, city space is typically discretized into
a square grid system, which results in a nite number of
unique states.

• Action: The action of the available driver is dened as
the request they choose to accept.

After taking action, each agent receives utility, which is the
difference between the trip distance and the deadhead dis-
tance. To predict the expected emissions produced and the
utility achieved by a driver, we introduce two value func-
tions for the agent: one for the deadhead distance and an-
other for the trip distance.

Due to the complexity of considering multiple dependent
agents within the system, we simplify the learning mod-
ule by treating different agents as a single agent. In the
emission-aware fair assignment module, we leverage the
evaluated value functions to take appropriate actions for the

different action-correlated agents. We adopt a framework
that involves sequences comprising the current state, current
action, reward, and next state to estimate the value func-
tions. One effective method for learning in this scenario is
Temporal Difference (TD) learning [39], which iteratively
updates value functions based on the deadhead and trip dis-
tances of each completed ride request.

Below, VD(s) shows the expected deadhead distance a
driver could travel when starting from state s.

VD(s) = E

 ∞

t=0

γt · dt,Ds0 = s


, (4)

where dt,D is the deadhead distance of tth trip served by
the agent, s0 denotes the starting state of the agenet, and
γ ≤ 1 is the discount factor. Similarly, we dene VT (s) as
the expected trip distance a driver will travel when starting
from state s.

VT (s) = E

 ∞

t=0

γt · dt,T s0 = s


, (5)

where dt,T is the trip distance of tth trip served by the agent.
Assume the agent is located in state st and after serving

the request, travels to the next state st+1. The TD learning
update rule for the value functions based on the trip and
deadhead distance of the trip are as follows:

VD(s) ←VD(s) + α [dt,D + γVD(st+1)− VD(st)] , (6)
VT (s) ←VT (s) + α [dt,T + γVT (st+1)− VT (st)] , (7)

where α is the learning rate. The values of VD(s) and VT (s)
are initialized through a specic initialization process (such
as zero initialization or random initialization). After a driver
serves a ride request, the values of these functions are up-
dated accordingly. In the next section, we demonstrate how
these value functions can be used to evaluate the expected
deadhead and trip distances for trips starting in different city
locations, ultimately estimating the future emissions and
utility of drivers.

4.2 Batched Emission-Aware Fair Assignment

In this section, we propose the process of matching ride
requests to available drivers within LEAD. LEAD performs
the ride matching process in a batch setting, where each
batch comprises ride requests posted after the assignments
from the previous batch. Let Ev,r,b denote the long-term
expected emission produced by driver v after being assigned
to request r within batch b. The value of Ev,r,b depends
on the trip and deadhead distances for serving request r, as
well as future deadhead and trip distances traveled by driver
v. To estimate the latter, we leverage the value function
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Algorithm 1: LEAD(Rb, Vb)

1 forall v ∈ Vb, r ∈ Rb do
2 Calculate Ev,r,b using Equation (8);
3 Calculate Uv,r,b using Equation (9);

4 Matched-Pairs ← Solution of optimization
problem (10);

5 foreach r ∈ Rb do
6 v ← Matched-Pairs(r);
7 st ← current location of v;
8 st+1 ← dropoff location of the request r;
9 Update VD(st) using Equation (6);

10 Update VT (st) using Equation (7);

11 return Matched-Pairs;

described in the previous section. Specically, the expected
emission produced by driver v during and after batch b can
be calculated as:

Ev,r,b = E

 ∞

t=0

γt(dt,T + dt,D) · ev
s0 = lv,b, s1 = qr



=


(d(T )

r + d(D)
v,r ) + γ(VT (qr) + VD(qr))

− (VT (lv,b) + VD(lv,b))


· ev, (8)

which is directly derived from Equations (4) and (5), con-
sidering that the driver is located at state lv,b and will
travel to the dropoff location of the request after serving
of that. Similarly, let Uv,r,b denote the expected nal utility
of driver v given that they were assigned to request r during
batch b and had a utility history of Uv,r by that time. We
can evaluate the value of Uv,r,b as follows:

Uv,r,b = E

 ∞

t=0

γt(dt,T − dt,D)
s0 = lv,b, s1 = qr



= Uv,r + (d(T )
r − d(D)

v,r ) + γ(VT (qr)− VD(qr))

− (VT (lv,b) + VD(lv,b)). (9)

During the ride-matching of batch b, LEAD nds the set
of requests Rb, and available drivers in that batch, Vb, and
evaluates Ev,r,b, and Uv,r,b for every pair of v and r in the
batch. Then, LEAD nds the solution of the integer linear
programming problem below to match each ride request to

available drivers.

min Emission(b) − η · Fairness(b), (10a)

Emission(b) :=


v∈Vb



r∈Rb

Ev,r,b · xv,r, (10b)

Fairness(b) := −max
v



r∈Rb

(Uv,r,b · xv,r)

+ min
v



r∈Rb

(Uv,r,b · xv,r), (10c)

s.t.,


v∈Vb

xv,r ∈ 0, 1 ∀r, (10d)



r∈Rb

xv,r ∈ 0, 1 ∀v, (10e)

vars., xv,r ∈ 0, 1 ∀v, r, (10f)

where Emission(b) represents the expected total emissions
produced by the ridesharing service during and after batch
b. Fairness(b) estimates the expected fairness of the system
given the assignments in batch b. It is worth mentioning that
if the number of ride requests in batch b exceeds the number
of available drivers, only the rst Vb ride requests will be
assigned, with the remaining requests being moved to the
next batch.

The pseudocode for LEAD is outlined in Algorithm 1.
Initially, LEAD evaluates the values of Ev,r,b and Uv,r,b

for every pair of v and r in batch b (Lines 1-3). Next,
it nds the solution for the optimization problem in (10),
determining which driver should serve each ride request.
The nal step is to update the value functions based on the
actual trip and deadhead distances of the served ride re-
quests within this batch. Specically, for each request r
in the batch, LEAD updates the value functions associated
with trip and deadhead distances using the update rules pre-
sented in Equations (6) and (7) (Lines 5-10). By integrat-
ing emission and fairness into a single objective, LEAD bal-
ances reducing carbon emissions with the fairness of utili-
ties among drivers. Additionally, by considering the long-
term expected emissions and utilities instead of just the cur-
rent values, LEAD optimizes these metrics with a forward-
looking perspective.

5 Experimental Evaluation

In this section, we conduct comprehensive experiments
to evaluate the performance of LEAD using several metrics,
including emissions per trip, fairness in driver’s utility, and
average wait times for riders. We compare LEAD against
state-of-the-art algorithms across various values for differ-
ent batch durations, the fairness parameter η, and the per-
centages of low-emission vehicles. Below, we outline the
key questions the evaluation addresses and summarize our
ndings.
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Q1 How does LEAD reduce emissions, especially compared
to other baselines targeting emissions reduction?
Outcome: LEAD reduces emissions by at least 73.6%,
70.5%, and 58.3% compared to CD, TORA, and LAF al-
gorithms, respectively.

Q2 How much unfairness does LEAD incur to reduce emis-
sions, compared to LAF that only targets fairness?
Outcome: LEAD offers a favorable, and more impor-
tantly congurable, tradeoff between fairness and emis-
sions reduction; it reduces emissions by 65% for a 9%
drop in fairness. It also exposes the η knob to enable
navigating the tradeoff gracefully.

Q3 How does LEAD’s rider wait time performance compare
to the baselines that explicitly consider reducing wait
time?
Outcome: LEAD achieves at least a 40% improvement
over baseline algorithms while also ensuring that im-
proving fairness for drivers does not impact the rider’s
wait time by more than 3%.

5.1 Experimental Setup

First, we provide details on the ridesharing dataset, base-
line algorithms, metrics, and the range of evaluation param-
eters.
Ridesharing dataset. Our experiments use a publicly avail-
able dataset from RideAustin [28], a non-prot ridesharing
service based in Austin, Texas. This dataset includes ap-
proximately 1.5 million trips over ten months in 2016 and
2017, collected in Austin. It contains detailed trip informa-
tion such as pick-up and drop-off coordinates of each trip,
vehicle make and model, distances traveled before, during,
and after each trip.

In our experiments, we use a subset of the RideAustin
dataset, focusing on trips from December 1, 2016, to De-
cember 15, 2016. This subset includes 58,866 rideshar-
ing trips served by 150 drivers. We augment this dataset
by including carbon emission data for both deadhead miles
and individual trips, as well as equity information for
drivers and riders, using E2-RideKit, a publicly avail-
able toolkit [32]. We assume a rider cancels their request
if it remains unassigned for two consecutive batches, and
considered drivers available within 15 minutes in the set of
available drivers of the batch. We also classied vehicles
emitting under 135 g.CO2/km as low-emission (LEVs) and
over 270 g.CO2/km as high-emission (HEVs). To assess
the impact of replacing HEVs with LEVs, we created three
dataset variants by randomly converting a certain percent-
age of the non-LEVs into electric vehicles (EVs), resulting
in datasets with 10%, 15%, and 25% LEVs. We set the EV’s
emission intensity to 63.35 g.CO2 per kilometer.1

1We used the Tesla Model Y as a representative EV, which has an

Comparison algorithms. We evaluate the performance of
LEAD against a heuristic baseline algorithm and two state-
of-the-art algorithms from prior works detailed below:

• Closest Driver (CD): For a given batch of requests, this
algorithm sequentially matches requests in the batch and
greedily assigns a request to the nearest available driver
to minimize the deadhead miles and the rider’s wait time.

• LAF [35]: This algorithm has four stages: evaluating, as-
signing, guiding, and learning. Initially, it evaluates a
bipartite graph where edge weights represent trip prices,
and these weights are updated to reect both current and
future earnings. During the assigning stage, LAF utilizes
a bi-objective assignment algorithm to balance the aggre-
gate utilities of drivers and the equity in their utilities. The
learning stage involves rening weight updates through
reinforcement learning to guide future assignments.

Since LAF aims to maximize total utilities and ensure eq-
uity in utilities, it uses a single value function to track the
expected achievable utilities in different city regions. For
adaptation to the current work, we set the utility (or price)
of a ride request r served by driver v as the difference
between the trip and deadhead distances and evaluated
weights in Algorithm 1 of [35] accordingly. Addition-
ally, during our experiments, the weight of trip utilities
over different times of the day is the same.

• TORA [32]: TORA is an online ride-assignment algo-
rithm that aims to balance passenger waiting times with
system-wide emissions. To the best of our knowledge,
it is the only existing online ride assignment algorithm
that explicitly considers emissions. TORA aims to reduce
passenger waiting times by initially selecting the clos-
est available driver. It then evaluates alternative avail-
able drivers by comparing their distances and the addi-
tional deadhead emissions they would generate relative to
the closest driver. For each driver, TORA calculates an
“Emission-to-Distance” (E2D) ratio, which is the ratio of
the difference in deadhead emissions and the deadhead
miles from the two drivers to the passenger. Finally, the
algorithm selects the driver with the most favorable E2D
ratio. Although TORA accounts for carbon emissions dur-
ing ride matching, it does not address fairness in driver
utilities.

Parameter ranges. We evaluate the performance of LEAD
and baseline algorithms in various experimental settings.
We evaluate the impact of parameter η and batch duration
by varying η between 0.1 g.CO2/km and 10 g.CO2/km and
varying batch duration values between 2 and 15 minutes.

energy efciency rating of 26 kWh/100mi. The unit distance emissions
were calculated using the average carbon intensity of 408 g.CO2eq/kWh
for Austin, Texas.
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(a) LEAD vs. baselines (b) Impact of LEVs (c) Impact of Eta (η).

Figure 2: Emissions reduction performance: (a) emission per trip for different algorithms as a function of batch duration, (b)
impact of the percentage of low emission vehicles (LEVs) in the eet on LEAD, and (c) the impact of increasing emissions
for an increase in fairness, captured using η. Here, η species extra emissions that the algorithm incurs to reduce unfairness
by 1km.

To dene unique states, we divide the city into square tiles
with a width of 1 km, initialize value functions to 0, set the
discount factor γ = 0.9, and the learning rate α = 0.025 to
align with the evaluation settings used in [35].
Performance metrics. We evaluate the performance of
LEAD and comparison algorithms using three performance
metrics: per trip emissions, fairness in driver’s utility, and
rider waiting time. For fairness, we normalize our results to
LAF outcomes when comparing different algorithms. How-
ever, in analyzing the effect of LEV penetration, we nor-
malize the values to the LEAD without the addition of
LEVs. We also report the proportion of trips assigned to
low-emission vehicles (LEVs) and high-emission vehicles
(HEVs), as well as the proportion of successfully matched
requests.

5.2 Impact on Per-Trip Emissions

Figure 2 shows the performance of LEAD in reducing
the average emissions per trip against the baselines across
various parameters.
Key results. As shown in Figure 2(a), LEAD outperforms
all the baseline algorithms for all batch durations. LEAD
reduces emissions per trip by at least 73.6%, 70.5%, and
58.3% when compared to CD, TORA, and LAF algorithms,
respectively. LEAD does even better when the batch du-
ration increases. While the emissions per trip for CD and
TORA slightly decrease with an increase in batch duration,
LEAD achieves signicantly higher reductions at longer
batch duration, thereby increasing the margin of improve-
ment. Finally, LAF’s performance worsens with an increase
in batch duration; emissions are 9% and 3% higher at 15
minutes than at 2 and 5 minutes, respectively.

As shown in Figure 2(b), adding low-emission vehicles
(LEVs) to the ridesharing eet reduces the average emis-
sions per trip. Adding 10% LEVs provides up to 8.2% de-
crease in emissions; adding 15% LEVs reduces emissions

by up to 13.5%; adding 25% LEVs achieves up to 30.9%
reductions in emissions. Importantly, the lowest reductions
for all LEV values occur at the longest batch duration, such
as adding 10% LEVs at 15 minutes yields no added benet.

As shown in Figure 2(c), η does not have a signicant
impact on the emissions per trip. The highest increase in
the emissions per trip is 5.15%, which is observed for an
LEV percentage of 25%. As we increase η to 10gCO2/km,
the emissions only increase by 1.9% and 2.5% at 10% and
15% LEV percentages, respectively.
Analysis of ndings. We next take a deeper look at some
of the results we have observed about LEAD’s impact on
emissions.

• Why does LEAD outperforms deadhead miles- and
emissions-aware algorithms CD and TORA? The pri-
mary reason that LEAD outperforms CD is that CD does
not take into account the unit emissions of the vehicles
when assigning requests to drivers. Another reason that
LEAD outperforms TORA and CD is that it assigns all the
requests in each batch simultaneously, whereas TORA and
CD assign the requests sequentially within each batch.

• Why does adding LEVs yield fewer emissions reduc-
tions at longer batches? As the batch duration increases,
LEAD can access a bigger set of drivers and riders, allow-
ing it to make low-emission ride assignments, even with-
out a high LEV percentage. The effect is more acute at
smaller percentages of LEVs.

• Why do the emissions per trip for LEAD not increase
with η? The value of η shows the grams of CO2 emitted
to increase fairness by 1km. LEAD makes this tradeoff
highly judiciously and only chooses the trips when im-
provement in fairness is possible.
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(a) LEAD vs. baselines (b) Impact of LEVs (c) Impact of Eta (η).

Figure 3: Fairness performance: (a) normalized fairness for different algorithms as a function of batch duration, (b) impact
of the percentage of low emission vehicles (LEVs) in the eet on LEAD, and (c) the impact of increasing emissions for an
increase in fairness, captured using η. Here, η species extra emissions that the algorithm incurs to reduce unfairness by
1km.

Key takeaways. LEAD outperforms the state-of-the-art
emission-aware ride assignment algorithm TORA by up
to 80.7%. While additional reductions may be possi-
ble by optimizing batch duration and η, it will introduce
tradeoffs with our other objectives of increasing driver’s
fairness and reducing rider’s wait time.

5.3 Impact on Driver’s Fairness

Figure 3 shows the performance of LEAD in improving
fairness among drivers against the baselines across various
parameters.
Key results. As shown in Figure 3(a), no other algorithm,
including LEAD, beats the fairness performance of LAF.
The next best fairness performance is shown by LEAD, as
it reaches 90.8% of the fairness achieved by LAF at the
batch duration of 5 minutes. Importantly, LEAD’s worst
performance of achieving 65% of LAF’s fairness is only
marginally surpassed by CD algorithm which achieves 69%
of LAF’s fairness performance. TORA is the worst perform-
ing algorithm as it achieves between 37% to 49% of LAF’s
fairness performance.

As shown in Figure 3(b), adding LEVs gives the great-
est benets at low batch duration, where having 10% and
15% LEVs can improve fairness by 36% and to almost 2×,
respectively, compared to baseline ridesharing eet with
LEAD. Increasing LEVs beyond 15% provides marginal
gains in fairness across all batch durations. Finally, the
gains in fairness have the lowest point at a medium batch
duration of 10 minutes and increase on either side of the
batch duration.

Figure 3(c) shows the effect of η on fairness, providing
us with two key observations. First, increasing η increases
fairness, with a 37% increase at 0.1g.CO2/km and 80% in-
crease at 10g.CO2/km. Second, even a small percentage
of LEVs provide a very big improvement in fairness at the

higher values of η; 15% LEVs can improve fairness by 40%
at η value of 10g.CO2/km.
Analysis of ndings. We next look deeper at the results we
presented to quantify the fairness properties of LEAD.

• Why does fairness rst increase and then decrease
with increasing batch duration? As the batch dura-
tion increases, more opportunities exist to increase fair-
ness and reduce emissions. The absolute fairness (not
shown in the graph) for both LEAD and LAF increases.
However, since LAF uses the benets from batch dura-
tion only to improve fairness, while LEAD uses it for both
increasing fairness and decreasing emissions, the normal-
ized performance of LEADwith respect to LAF decreases.

• Why does longer batch duration suppress the effect of
LEVs on improving fairness? When the batch duration
is short, there are fewer available drivers, limiting the al-
gorithm to a smaller pool and reducing its ability to prior-
itize low-emission vehicles. However, with longer batch
durations, the algorithm has a wider selection, allowing it
to choose low-emission vehicles more effectively, which
can lead to reduced fairness.

• How increasing η to improve fairness impacts emis-
sions? As outlined in the previous section, η has a
marginal impact on emissions, with a maximum increase
of 5.15%. Since increasing η can improve fairness by al-
most 80%, the tradeoff seems desirable.

Key takeaways. LEAD offers a highly favorable trade-
off between improving fairness and reducing emissions.
For example, at batch duration of 5 minutes, it reduces
emissions by 65% while degrading fairness by less than
9%. However, using η, fairness can be made comparable
with LAF for a less than 2% increase in emissions.

9



(a) LEAD vs. baselines (b) Impact of LEVs (c) Impact of Eta (η).

Figure 4: Wait time performance: (a) wait time for different algorithms as a function of batch duration, (b) impact of the
percentage of low emission vehicles (LEVs) in the eet on LEAD performance, and (c) the impact of increasing emissions
for an increase in fairness, captured using η. Here, η species extra emissions that the algorithm incurs to reduce unfairness
by 1km.

5.4 Impact on Rider’s Wait Time

Figure 4 shows the impact of LEAD on the wait time
for riders against the baselines across various parameters.
Note that CD targets reduce wait time and deadhead miles
(or emission) by assigning the closest driver. TORA is ex-
plicitly wait time aware as it bounds the wait time experi-
enced by the rider.
Key results. As shown in Figure 4(a), LEAD outperforms
the baseline algorithms for all batch duration. The reduc-
tion in wait time over CD is the most signicant, with 49%
to 54% improvement. The performance improvement over
LAF and TORA is always more than 40%. Finally, the in-
crease in batch duration has a higher impact on our baseline
algorithms, while LEAD achieves its best wait time perfor-
mance at a batch duration of 5 minutes.

Figure 4(b) shows that the wait time for the riders gets
worse at a higher penetration of LEVs. However, the in-
crease in wait time, even at the worst point, is 4.16% (for
15% LEVs at 5-minute batch duration). Interestingly, in-
creasing LEVs from 15% to 25% reduces the wait time, but
by at most 1.6% and at least 0.2%. Figure 4(c) shows that
increasing η has a small effect as well, between 2.1% to
2.8% for different penetration levels of LEVs.
Analysis of ndings. We now do a deep dive into our re-
sults.
• Why does wait time for LEAD increase after batch du-
ration of 5 minutes? An increase in the batch duration
puts a lower bound on the wait time for all the rides in the
batch. However, an initial increase in batch size duration
increases the possibility of a driver coming closer to the
rider and becoming available. However, beyond a certain
batch duration, the effect of increasing the lower-bound
dominates, and wait time goes up.

• Why having more LEVs is bad for wait time? How

does it impact the usefulness of LEAD? As LEAD tar-
gets reducing emissions, it will prioritize EVs even if they
are farther away or will only be available after nishing a
ride, thus increasing the wait time. While the increase in
wait time is not desirable, the increase is not signicant,
and the addition of LEVs provides signicant emission
reduction and fairness benets.

Key takeaways. LEAD outperforms CD by consider-
ing the future availability of the drivers, same as TORA.
However, its explicit focus on reducing deadhead miles
reduces wait time beyond TORA. Importantly, LEAD’
wait time is less sensitive to batch duration and η, al-
lowing for reducing emissions and increasing fairness.

5.5 Additional Performance Benchmarking

In this section, we benchmark LEAD and other baselines
using the additional metrics that evaluate system-level per-
formance. The results are shown in Table 2 and Table 3.

LEAD outperforms baseline algorithms in improving
utility by at least 19% and reducing deadhead-to-trip ratio
by 15.2% over the second-best algorithm LAF. However,
LAF rejects many ride requests, as outlined in the original
paper, and accepts only 93.3% requests compared to 98.3%
ride acceptance rate for LEAD.

Importantly, LEAD also solves TORA’s problem of as-
signing a disproportionate number of rides to LEVs by al-
locating rides to LEVs in proportion to their penetration in
the eet.

6 Discussion and Future Works

In this paper, we propose LEAD, a Learning-based
Equity-Aware Decarbonization approach for ridesharing
platforms. LEAD minimizes emissions while ensuring fair
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Table 2: Performance comparison of LEAD against base-
lines for η = 5 g.CO2/km and batch duration of 5 minutes.

Algorithm Avg. utilities (km) Avg. deadhead Percentage of
to trip ratio matched requests

CD 763.14 0.66 97.4%
TORA [32] 820.4 0.62 97.3%
LAF [35] 890.56 0.59 93.3%
LEAD (ours) 1065.09 0.50 98.3%

Table 3: Fraction of rides assigned to LEVs at various LEV
%ages for η=5 g.CO2/km and batch duration of 5 minutes.

Algorithm Original 10% LEV 15% LEV 25% LEV

TORA [32] 13.58 20.41 26.07 35.05
LEAD (ours) 6.9 11.60 16.61 26.16

distribution of drivers utility. LEAD leverages reinforce-
ment learning to optimize rider-driver matches based on
the expected future utility for drivers and projected car-
bon emissions for the platform without increasing rider
waiting times. Extensive experiments using a public real-
world ridesharing dataset demonstrate that LEAD outper-
forms state-of-the-art baselines in terms of reduction in
emissions and wait time while providing a desirable tradeoff
with fairness. In the future, we will explore fairness from a
rider’s perspective and short-term uctuations in driver util-
ity, in addition to the long-term effect this paper considers.
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