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Abstract

Recent advances in omnidirectional cameras and AR/VR headsets have spurred the adoption of
360° videos, which are widely believed to be the future of online video streaming. 360° videos allow
users to wear a head-mounted display (HMD) and experience the video as if they are physically
present in the scene. Streaming high-quality 360° videos at scale is an unsolved problem that is
more challenging than traditional (2D) video delivery. The data rate required to stream 360° videos
is an order of magnitude more than traditional videos. Further, the penalty for rebuffering events
where the video freezes or displays a blank screen is more severe as it may cause cybersickness. We
propose an online adaptive bitrate (ABR) algorithm for 360° videos called BOLA360 that runs inside
the client’s video player and orchestrates the download of video tiles from the server to maximize
the quality-of-experience (QoE) of the user. BOLA360 conserves bandwidth by downloading only
those video tiles that are likely to fall within the field-of-view (FOV) of the user. In addition,
BOLA360 continually adapts the bitrate of the downloaded video tiles so as to enable a smooth
playback without rebuffering. We prove that BOLA360 is near-optimal with respect to an optimal
offline algorithm that maximizes QoE. Further, we evaluate BOLA360 on a wide range of network
and user head movement profiles and show that it provides 6% to 110% improvements to the
QOE of state-of-the-art algorithms. While ABR algorithms for traditional (2D) videos have been
well-studied over the last decade, our work is the first ABR algorithm for 360° videos with both
theoretical and empirical guarantees on its performance.

*University of Massachusetts Amherst. Email: azeynali@cs.umass.edu.

tUniversity of Massachusetts Amherst. Email: msahebdelalaumass .edu.

YUniversity of Massachusetts Amherst. Email: hajiesmaili@cs.umass.edu.

$University of Massachusetts Amherst & Akamai Technologies. Email: ramesh@cs.umass.edu.



Omnidirectional Tile & Viewport
(a) (b)

Figure 1: (a) Users watch 360° videos by moving their viewport to point to any direction in the
enclosing sphere (b) each frame of the 360° video is broken up into tile frames [5].

1 Introduction

With recent advancements in omnidirectional cameras and AR/VR headsets, users can enjoy 360°
media like YouTube 360 [1], virtual and augmented reality applications |2, 3|.Users either wear a head-
mounted display (HMD) or use a device that allows them to change their viewport and field-of-view
(FOV)! when watching a 360° video (see Figure 1). For instance, a user watching World Cup soccer as
a 360° video can wear an HMD and watch the game by changing their head position as if they were
actually in the stadium.

The rapid increase in the popularity of 360° videos is partly driven by the wide availability of VR
headsets that has grown more than five-fold in the past five years to reach nearly 100 million units in
use [4]. A second trend driving the popularity of 360° videos is the wide availability of omnidirectional
cameras that make it easy to create 360° video content. While the promise of providing an immersive
experience has made 360° videos the holy grail of internet video streaming [5], providing a high quality-
of-experience to users while delivering those videos at scale over the internetis a major unsolved problem
and is the main motivation of our work.

Tiled video delivery. A common approach to deliver 360° video from server to users (i.e.,
client) is to divide the entire 360° video into same duration chunks of length §. Then, each chunk is
spatially split into a set of tiles to fully cover the viewing sphere of the user (see Figure 1). Each tile
is encoded in multiple bitrates (i.e., resolutions) so that the quality of the tiles sent to the user can be
adapted to the available bandwidth between the server and the client, a feature known as “adaptive
bitrate streaming”. Video tiles are streamed ahead of time and buffered at the client before they can
be rendered to the user. As the user changes their viewportthe appropriate tiles within the user’s FOV
is extracted from the client’s buffer and rendered on the user’s display.

Challenges of 360° video delivery. A key challenge in delivering 360° videos is that they are
an order of magnitude larger in size than traditional (2D) videos [6, 7, 8]. 360° videos require multiple
tiles to cover the entire viewing sphere, each encoded in multiple bitrates akin to 2D videos. Further,
a high resolution of 4K to 8K is recommended for viewing AR/VR media |7]. Thus, the data rate of a
360° video that delivers a 4K stream for eight tiles and allows the user to watch the full 360° viewing
sphere is 200 Mbps, compared to about 25 Mbps for a traditional 4K video. In fact, the data rate of
such a 360° video is an order of magnitude larger than the US’s average last-mile bandwidth [9, 10].
Additionally, when the user’s viewport changes, say due to a head movement, the new tiles that fall
within the user’s new FOV must be rendered within a latency of a few tens of milliseconds so as to not
cause a rebuffering event that results in showing either an incorrect /stale tile or no tile at all (i.e., blank
screen). If the “motion-to-photon” latency exceeds a few tens of milliseconds, the user experiences a

!Field of view is the spatial area that falls within the viewport of the user’s device. A user sees only the portion of
the 360° video that is within the FOV.



degraded quality-of-experience, or even cybersickness [5].

Adaptive Bitrate (ABR) for 360° Videos. We investigate ABR algorithms for handling the
challenges posed by the large size of 360° videos. While ABR algorithms for traditional 2D videos have
been extensively studied over the past decade [11, 12, 13, 14, 15, 16, 17], ABR algorithms for 360°
videos are notably more complex. They must perform both "view adaptation" by predicting the user’s
head position and potential future tile views, and "bitrate adaptation" by determining appropriate
bitrates for downloading tiles. Importantly, these two adaptations are jointly optimized to prioritize
higher bitrates for tiles more likely to be in the user’s viewport. Note that this challenge is different
from tile scheduling problem which determines the download ordering of tiles [18].

Challenges of Naive ABR Solutions. Naive ABR algorithms equally distribute the available
bandwidth among all tiles, resulting in downloading the sametiles for each chunk. While this approach
prevents rebuffering by having the entire tiles of a chunk, it leads to suboptimal video quality. An
alternative approach predicts the tiles the user is likely to watch and downloads only those tiles,
reducing the number of downloaded tiles and allowing for higher quality. However, this approach is
susceptible to rebuffering if the user unexpectedly switches to unpredicted tiles[19, 20, 21, 22, 23, 24,
25, 26]. Our proposed approach offers a provably near-optimal solution by striking a balance between
these naive extremes, achieving both high quality and reduced rebuffering.

Our Contributions. We leverage Lyapunov optimization techniques to achieve both high bitrates
and low rebuffering by judiciously downloading higher-quality tiles for tiles that are more likely to be in
the FOV of the users, while using lower-quality tiles for the rest of the tiles as a hedge against rebuffering.
Our algorithm, BOLA360, is a near-optimal ABR algorithm for 360° videos that also empirically performs
better than state-of-the-art algorithms. We make the following specific contributions.

1) We frame the optimization of quality-of-experience (QoE) for 360° videos as the ABR360 problem.
We model QoE as a weighted sum of two terms, one term relates to the quality (i.e., bitrate) of the video
tiles viewed by the user, and the other term relates to continuous video playback without rebuffers.

2) We present an optimal offline solution to the ABR360 problem, which establishes an upper bound
on the achievable QoE by any online algorithm. While this offline algorithm is impractical for real-
world use, it serves as a benchmark for comparing the QoE performance of online algorithms in our
experimental analysis.

3) We present BOLA360%, an algorithm that finds a near-optimal solution for ABR360 in an online
manner without the future knowledge of inputs. In each round, BOLA360 selects a suitable bitrate for
each tile based on the current buffer utilization. Further, there are multiple parameters in BOLA360
that could be tuned to improve the performance under different conditions and environments.

4) We analyze BOLA360’s performance, demonstrating that (i) it never exceeds the client’s buffer
capacity (Theorem 5.1) and (ii) its average QoE is within a small additive constant factor of the
offline optimum of ABR360 (Theorem 5.2), the additive factor goes to zero when the buffer size goes to
infinity. Additionally, considering the playback delay — the time between tiled download and rendering,
our analysis reveals a tradeoff between playback delay and BOLA360’s QoE, i.e., one needs to tolerate
a longer playback delay to achieve better QoE (Remark 2).

5) We implement BOLA360 on a simulation testbed and evaluate its performance using both real
and synthetic data traces. Using trace-based simulations, we compare BOLA360 with state-of-the-art
algorithms used in VA-360 [28], ProbDASH [29]|, Salient-VR [30|, Flare [31], Pano [32], and Mosaic [33].
Our results show that in comparison with QoE of the best alternative ABR, algorithm, on average
BOLA360 provides 6% improvements over 14 real network profiles (Figure 9) and 9% improvements over
12 different head position probability distributions (Figure 13).

6) Finally, we explore two extensions to BOLA360, addressing specific real-world scenarios [34].
While BOLA360 already demonstrates impressive QoE, average bitrate, and rebuffering performance,
further enhancements can be achieved by introducing heuristics on top of its core design. We introduce

A preliminary version of this article appeared at ACM MMSys 2024 [27].
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Figure 2: One shot from the entire spatial area of 360° video and FOV of user in that

BOLA360-PL and BOLA360-REP, each targeting specific limitations of the original algorithm. Our ex-
periments show BOLA360-PL reduces reaction time by up to 67.8%, while BOLA360-REP enhances both
playing bitrate and reaction time by 91.2% and 80.0%, particularly when combined with short-term
head position predictions. These heuristics offer efficient and practical solutions, surpassing the original
algorithm’s performance.

Roadmap. The paper is structured as follows: First, we investigate the background of 360°
video streaming in Section 2. Then, we present the system model and formulate the ABR360 problem
in Section 3. Next, In Section 4, we present an optimal offline solution for the problem of bitrate
adaptation for 360° video streaming. In Section 5, we develop BOLA360 using a Lyapunov optimization
approach, proving its near-optimality. Section 6 evaluates the performance BOLA360 against state-
of-the-art algorithms. In Section 7, we introduce two enhancements for BOLA360 which practically
improves its performance. The related work is discussed in Section 8, and we conclude in Section 9.

2 Background

ABR Algorithm for 360° Videos. Tile-based 360° videos temporally slice the video into chunks.
Each chunk is split into multiple tiles to cover the entire 360° spatial area. Usually, each tile is encoded
in multiple quality levels or bitrates for video streaming. The ABR algorithm for 360° video has to
select the bitrate of a tile before downloading it. So, the action of the online ABR algorithm for each
chunk is a list of selected bitrates for each tile.

Field of View [FOV]. A 360° video is encoded in the full 360° visual sphere. However, the human
eye’s field of vision covers about 130°[35]. Therefore, the user interacting with the 360° video cannot
see the entire spatial area of the presented video. The part of the 360° video inside the user’s visible
region is called Field of View or FOV. Figure 2 shows an example of a FOV that comnsists a subset
of tiles of the full sphere of the 360° video seen by the user. We use the term view to refer to the
group of tiles inside the FOV. When the user interacts with 360° video with a VR headset, the user can
arbitrarily change the FOV and view by moving their head.

Buffer Occupancy based Lyapunov Algorithm. BOLA [34] is an ABR algorithm optimized
for single-tile 2D video streaming, using buffer occupancy in bitrate selection. In 360° video streaming,
besides bandwidth uncertainty, additional factors like user head direction and FQV introduce complexity.
Due to these added challenges and uncertainties unique to ABR360, traditional 2D ABR algorithms
cannot be directly applied to effectively solve ABR360.

3 System Model and Problem Formulation

In this section, we present the system model and problem formulation for the online 360° video bitrate
selection problem.



Table 1: Summary of important notations.

Notation | Description

K Number of chunks
D Number of tiles
M Number of available bitrates
0 Length of a chunk
Sm Size of a tile with bitrate index m
Um Utility value of watching a tile with bitrate index m
The probability of the tile d is inside FOV while playing
Pk.d chunk &
Tend Streaming duration
Time interval between finishing downloading chunks
Ty,
k—1and k
0% Relative importance of the two terms in user’s QoE
Q(t) Buffer level at time ¢
Qmax Buffer capacity
Decision variable for bitrate index m of tile d of chunk
Ak dm Lk
n Average number of tiles downloaded for chunks played
k during the downloading of chunk k

The 360° Video Model. We consider a 360° video as a sequence of K chunks, where each chunk
represents § seconds of the playback time. Fach chunk is further partitioned into D tiles to cover the
entire 360° spatial area. Each tile is encoded in M different bitrates, all of which are available at the
server; the higher the bitrate, the larger the size in bits. Let S,, denote the size (bits) of a tile with
bitrate index m. We define v, as the utility value the user gets by watching a tile with bitrate index
m. Therefore, we have the following inequality.

S1 <S5 <. <Sye v <uv <. <oy

During the playback time of each chunk, the user views only tiles inside their FOV. The bitrate of tiles
inside the FOV directly impacts the QoE. Downloading tiles which falls out of FOV wastes the bandwidth
capacity. A key challenge is that the FOV is unknown to the bitrate selection algorithm at download
time. As a result, the online bitrate selection algorithm must predict the FOV and download tiles based
on its prediction. Let py 4 denote the probability of the tile d is inside FOV while playing k" chunk. We
assume that these probability values are given from a prediction based on the previous user’s watching
the video [36, 19, 37, 30, 38|, or from a chunk analysis of the content combined with points probability
analysis of 360° sphere [29, 39, 40]. For simplicity, we assume that the probability values of tiles within
a chunk are normalized, such that ZdD:l Pkd=1.

Problem Formulation. In what follows, we formulate ABR360, an online optimization problem for
the bitrate and view adaptation of 360° video streaming. In ABR360, the objective is to maximize the
expected QoE of the user, including two terms: 1) the utility term that is related to quality of the
video watched by the user, and 2) the smoothness of streaming term that captures continuous playback
without rebuffering. The first term directly depends on the bitrate downloaded by the streaming
algorithm, i.e., the higher the bitrate, the higher the utility. The second term captures the expected
smoothness of video streaming. Rebuffering happens when at least one of the tiles inside FOV is not



completely downloaded during playback time. Note that the above two terms conflict with each other.
To maximize the utility, an ABR algorithm must download the highest possible bitrate tiles. However,
to maximize the expected continuous smooth playback, the ABR algorithm must download low-bitrate
tiles. Thus, to maximize the sum of both terms, the ABR algorithm must balance the two conflicting
requirements.

We now formulate QoE mathematically to capture the utility as the sum of the two terms Ui and
Rp. The first term Ug represents the time-average expected playback utility the video player prepares
for the user over the sequence of chunks and is defined as

UK _ Zfil Z(?Zl Z’r]‘r/{:l E{ak,d,m *Pk,d Um} (1)
IE{Tend} ’
where Tinq is the time the video player finishes playback of the last chunk, and aj 4., is a binary
optimization variable in the ABR360 problem: ay, 4., = 1 if bitrate index m is selected for tile d of chunk
k; 0, otherwise. The second QoE term is denoted by Ry, which targets the playback smoothness as
follows.

Ry = Zszl Zc?:l er\r/{zl E{ak,d,md}. 2)
IE{Tend}

That is, Rx represents the ratio of the expected playback duration of downloaded tiles to the
streaming duration. A low Ry when Ty,q greatly exceeds tiles playback duration (numerator) can lead
to rebuffering, making a high Ry indicative of continuous playback. Unlike Uy, Rx inversely correlates
with download time (or bitrate), decreasing with higher bitrates. Expectations in Equation (1) and
Equation (2) are computed over the possible randomized decisions or outcomes of the ABR algorithm
solving ABR360.

Let t; denotes the time the video player completes the download of tiles that belong to chunk £ —1
and decides about the bitrate of tiles for k" chunk. And T}, shows the time interval between finishing
downloading chunks k£ — 1 and k, i.e., Ty = tg4+1 — t. We use the coefficient v > 0 to set the relative
importance of the two terms in the user’s final QoE, i.e., v provides an opportunity to tune the relative
importance of high-bitrate streaming with respect to a continuous streaming experience. We formulate
the ABR360 problem as follows.

[ABR360)] max Ug + YRk (3a)
M

56, Y Gkam <1, Vd,k, (3b)
m=1

Q(tk) < Qmax, Vk, (3¢)

vars., agqdm € {0,1}. (3d)

Constraint (3b) limits to select at most one bitrate for each tile of a chunk. The second constraint
(3c) enforces the buffer capacity limit, where Q(¢x) is the buffer level at time ¢, and shows the aggregate
length of tiles available in the buffer at time t. Qmax is buffer capacity and depicts the maximum
aggregate length of tiles stored in the buffer. Since the number of tiles downloaded for each chunk is
not fixed, the actual number of tiles that drain out from the buffer when a chunk is played can vary
from chunk to chunk. To capture this, let ny be the average number of tiles downloaded for chunks
played during the downloading of chunk k. The evolution of the buffer level is characterized as

D M

Q(tk+1) = maX[Q(tk) —ngTy, 0] + Z Z ahd’mé, (4)

d=1m=1

where the first term refers to the length of tiles removed from the buffer during the download time of
chunk k and the second term shows the length of tiles recently downloaded.



Remark 1. For reqular 2D wvideos with D = 1, number of tiles that drain out of the buffer when each
chunk is played fized, ny, = 1. In this particular case, min[Q(ty), Tx| seconds drained out of the buffer
after passing Ty seconds.

4 An Optimal Offline Algorithm

In this section, we present an offline algorithm that obtains an upper bound for the optimal QoE of
ABR360. The algorithm is listed as Algorithm 1 and is based on dynamic programming to optimally
solve the ABR360 problem, given the full knowledge of the bandwidth capacities in advance. While this
algorithm is impractical since it requires the entire input a priori, we use this algorithm to evaluate the
significance of the performance of the proposed online algorithm. It is worth noting that Algorithm 1
generates an upper bound for the offline solution of the ABR360 problem formulated in Equation (3).
However, it is not a fully offline algorithm since it still takes head position probability values as the
input to ABR360. Nevertheless, the performance of Algorithm 1 is an upper bound on the performance
of any online algorithm without the knowledge of future bandwidth and head movement of the user.

Now, we proceed to explain the details of Algorithm 1. First, we discretize the time into slots
with length to. Let r(k,t,0) denote the maximum possible QoE the algorithm can achieve when it
downloads the first k£ chunks and finishes it at time ¢ and buffer level b. The algorithm initiates the
value of 7(0,0,0) = 0. Then, the algorithm calculates the download time T, and rebuffering time R, of
any possible action that determines the selected bitrate during downloading k*" chunk and evaluates
the best possible performance by utilizing the values calculated for the first (k — 1)"* chunks. Let T
show how long the downloading of action a, the set of selected bitrates for each tile, would take. The
algorithm may wait if the buffer is full to place the recently downloaded segments. Let b’ be the state of
the buffer before downloading k*" chunk, then the waiting time is at most Ty = max/[0, b’ + 1k — Qmaz),
where ny, is the number of tiles with positive bitrate for k® chunk. Then, 7" = |Tp/to] x to is the
conversion of T to units of 9. We round down the value of Tj/ty to ensure that the final calculated
QoE is an upper bound for the QoE of the optimal offline solution. Also, we calculate the rebuffering
happened while downloading k*" chunk, R = max[T’ — ¥/, 0]. Finally, we calculate the impact of action
a on achieved QoE by calculating 7/ in line 16. Now, by knowing the download time and rebuffering
for action a we can update values of time, buffer, and utility achieved by the algorithm by the end of
downloading k*" chunk as demonstrated in Lines 11, 12, and 17 of Algorithm 1. The following theorem
states the optimality of Algorithm 1.

Theorem 4.1. Algorithm 1 gives an upper bound for QoFE of optimal offline solution for ABR360.

Proof. The dynamic programming solution for the optimal offline problem with K chunks evaluates
the QoE that can be achieved by any permutation of actions during downloading the first K — 1 chunks.
Then, it uses the QoE values to evaluate the best achievable QoE for downloading all K chunks. We
prove the correctness of the algorithm by induction. The base case is evaluating the performance of
the optimal offline solution for starting moment of the stream. r(0,0,0) = 0 is the base case which
shows that the achieved QoE is zero at starting moment of the stream when we have downloaded no
tiles and the buffer is empty. This proves the correctness of the base case. Since we are evaluating the
performance of the offline algorithm for any value of ¢ and b for r(K — 1,¢,b), we would be able to
calculate the performance of the offline algorithm for all K chunks by evaluating every possible action.
It gives the optimal offline solution a chance to try any possible set of actions (line 5 of Algorithm 1
) and finds the best sequence of actions that leads to maximum QoE. As a result, 7(K,t,b) can store
the maximum achieved QoE by downloading K chunks until time ¢ and using b seconds buffer. As
a result, after filling the dynamic programming table, the value of r(K,t¢,b)/(t + b) shows the upper
bound on QoE of the optimal offline algorithm, and the proof ends.



Algorithm 1: Optimal offline algorithm for ABR360
Result: maxq ) r(K,t,0)/(t +b)

1 r(k,t,b) = —oc;

2 7(0,0,0) = 0;

3 for k in [1,2,..., K] do

4 for all (t',V') such that r(k — 1,¢',0') > —o0 do
5 for all possible set of action a = [m™,m® .. mP)] do
6 n : number of positive bitrates in a;
7 T : download-time(a);
8 To = max|[T, V' + nd — Qmaxl;
9 T = LTo/toj X to;

10 R =max[T" —V',0];

11 t=t'+T;

12 b=V —T + R+ nd;

13 Vd, v(@ := utility value of tile d;

14 Vd, ag =1if m@ > 0 else 0;

15 rE = de:l aq) (’U(d)pk,d + 0);

16 r'=r(k—1,tb)+rg

17 r(k,t,b) = max[r(k,t,b),7'];

18 end

19 end

20 end

5 BOLA360: An Online 360° ABR Algorithm

In this section, we propose BOLA360, a Lyapunov-based algorithm that finds a near-optimal solution
to ABR360. BOLA360 is an online algorithm whose decisions do not require the knowledge of future
bandwidth values.

5.1 Design and Analysis of BOLA360

The design of BOLA360 is based on three key ideas. First, BOLA360 finds a solution for a single-slot
maximization problem that leads to a near-optimal solution for the original long-term problem over K
chunks. Note that, solving the long-term optimization problem is not possible for the online algorithm
since there is uncertainty about the future input. Second, the single-slot decision of BOLA360 is based
on the buffer level; the higher the current buffer level, the higher the selected bitrate for download.
This is intuitive since a high buffer level indicates that the input rate into the buffer was higher than the
output rate from the buffer, so the algorithm has more freedom to download high-quality tiles. Third,
BOLA360 uses a threshold as the indicator of high buffer utilization, and by reaching the threshold, it
moves to an idle state and waits until the buffer level decreases again. This approach limits the buffer
utilization of BOLA360. It is worth noting that at the beginning and with an empty buffer, BOLA360
starts downloading low bitrates. With the above three key ideas, we now explain the technical details
of BOLA360. The pseudocode for action taken by BOLA360 for chunk k is described in Algorithm 2.
BOLA360 uses an input parameter V that controls the trade-off between the performance of the
algorithm and the maximum acceptable buffer utilization of the algorithm. Note that parameter V
also plays a critical role in the playback delay, i.e., for real-time streaming, smaller values of V' are
preferable, while in an on-demand streaming application, the larger values of V' are acceptable. At the
decision time t; for chunk k, the buffer level Q(¢;) and head position probability values encoded in



Dk,a are given. BOLA360 selects the bitrates for tiles of chunk k& by solving the maximization problem
described in the following.

D M
m(V (U - pi ) — Q(tr)/d
arg max n(k,a(k) = 3 =4 v pk’ngV) Q) (5a)
d=1m=1 m
M
s.t., > aham <1, Vkd, (5b)
m=1
vars., agdm € {0,1}, (5¢)

where

a(k) == {ag,am|Vk, m},
is a decision vector of BOLA360 and

Qmax/5 - D

O<V<
vpr + 0

is a control parameter bounded by the R.H.S term to guarantee that the required buffer level for

BOLA360 is less than Quax. Constraint (5b) limits BOLA360 to select at most one bitrate for each tile.

BOLA360 selects the near-optimal bitrates of chunk k by finding a decision vector a(k) = [ag 1.1, @k,1,2, - Q1 M > Qk 2,15
that maximizes the value of n(k, a(k)) in Equation (5a). When the buffer level exceeds V§(var + v6),

the algorithm enters the idle state and downloads nothing. In this situation, BOLA360 waits for A

seconds and repeats the bitrate selection for that chunk again. The selection of A could be dynamic

as suggested in [16], the algorithm waits until the buffer level reaches Q(t9) < Vé(var + v0). We note

that our theoretical analysis is valid even with a dynamic waiting time.

Algorithm 2: BOLA360 (k)

1 a(k): A decision vector that maximizes the value of 7n(k, a(k)) defined in (5a) with respect to
single-bitrate constraint (5b) for chunk k;

2 if number of non-zero elements in a(k) > 0 then

3 ‘ Download bitrates according to a(k) and finish the decision making of chunk #;
4 end

5 else

6 ‘ Wait for A seconds and repeat the bitrate selection for this chunk again;

7 end

5.2 Theoretical Analysis of BOLA360

We first provide an upper bound for the buffer level of BOLA360 in Theorem 5.1. Second, in Theorem 5.2,
we show the QoE of BOLA360 is within a constant term of the optimal QoE of ABR360. The theoretical
results reveal an interesting trade-off between the QoE and the playback delay of the BOLA360, which
is discussed in Remark 2.

Theorem 5.1. Under bitrate control of BOLA360, the buffer level never exceeds V(vpr + v0) + DJ.

Proof. The proof of this theorem is inspired by the proof of Theorem 1 in [16]. However, for
BOLA360, one has to deal with another challenge originated by adding head position probabilities into
the control plane of BOLA360. The high-level idea is BOLA360 select bitrates if the buffer level is at



most Vd(vpr +v0), otherwise it enters the idle states. Therefore, the maximum possible value of buffer
level after download of new tiles would be V§(vpr + v9) + DJ. We prove this theorem by induction.
The base case is Q(t1) = 0 < V§(var +79) + D9 that satisfies the statement of the theorem. Two cases
are possible for value of Q(t):

o Case 1: Q(tp) < Vo(upar + 79): in this case, the buffer level at time txy; will not exceed
Q(tk) + D§ < V5(1)M + ’75) + Dé.

o Case 2: Vi(upr +79) < Q(tr) < Vo(var +v0) + D4: In this scenario, the action at time ty is
to wait and refrain from downloading any tiles, as downloading any bitrate m would introduce a
negative term into the value of n(k,a(k)) in Equation (5a). Thus, Q(tx+1) < Q(tx).

Now, we proceed to analyze the QoE of BOLA360. With large K, the ABR360 problem with rate
stability constraint [41] is equivalent to the relaxed version of ABR360 with limited buffer capacity, i.e.,

Q(tk) SQmax

. 1 K D M ' 1 K

> Jim B 303 S vt} < Jim £{ YomiTil,

k=1 d=1m=1

In addressing the ABR360 problem with limited buffer capacity, it’s essential to ensure that the expected

input rate into the buffer remains below the buffer’s output rate. Failing to do so could lead to a buffer

capacity breach, especially as K approaches infinity. Notably, solutions that accommodate limited

buffer capacity inherently satisfy the rate stability constraint, though the reverse may not always hold.

In addition, in the limited buffer capacity setting, the difference between E{Te,q} and E{Zsz1 Ty} is

bounded by a finite value of Quax. Consequently, for the large videos, Equations (1) and (2) allow the
substitution of E{Tunq} with E{S 1| Tj}.

The stationary algorithm. In the context of ABR360 problem, we define stationary algorithm as
an ABR algorithm that uses a fixed set of bitrates, A, with size D (|A*|= D), and for each chunk
k, the set of selected bitrates for all D tiles are the same as the A*. Note that the selected bitrate
for each tile may vary over time depending on the head position probability values, while the set of
bitrates selected for all tiles of the chunk remains fixed.

Offline ABR360 problem fits in the notation of optimization for renewal frames [42]. Precisely, by
setting renewal frame duration the same as chunk download times and letting the achieved QoE of
downloading each chunk represent penalty values in the notation of [42], the offline ABR360 problem
can convert into an optimization problem over renewal frames. Then, following Lemma 1 in [42], we
prove the existence of a stationary algorithm with optimal QoE of Uy + vRJ,.

Lemma 1. For the ABR360 with a large video, i.e., K — 00, there exists a stattonary algorithm that
satisfies the rate stability constraint and achieves the optimal expected QoE of Uy + vRj,.

Proof Sketch. The proof of this lemma follows from Lemma 1 in [42] and continues with the
approach taken for proof of Lemma 1 in [16]. Based on the definition of a stationary algorithm for
the ABR360 problem, the expected QoE of the stationary algorithm is the same as expected, achieving
QoE on each slot, which satisfies the criteria of Lemma 1 in [42].

Theorem 5.2 (main theorem). Let 0BJ be the expected QoFE achieved by BOLA360. For a large video,
i.e., K — oo,
D§? + U
OBJ" — ————0 < 0BJ 7
ove2 0 =00 (™)
where 0BJ* = Uj; + YR, is expected QoE of the offline optimal algorithm, and o = 1/E{T},} and
U< E{DT,?}, That is, BOLA360 achieves a QQoE that is within an additive factor of the offline optimal.



Proof. Let’s define the Lyapunov function L(Q(t)), and per-slot conditional Lyapunov drift ®(t)
as below

L(Q(t) = 55 @ (1)
B(1) = E{A LQ() | Qa)} = E{LQ(tir1)) — Q) IR0}

Consider two cases: 1) Q(tr) < niT) and, 2) Q(tx) > niTk. The value of ®(tx) can be derived from
the buffer level evolution described in Equation (4).In the first case, when Q(t;) < niT}, the buffer is
emptied after downloading chunk &, and the value of ®(t) is given by:

1 D M
= E{5( SN aram)’ ~ 55 Q1) IQ(t)},

d=1m=1

In the second case, where Q(tx) > ngT), we have:

=E{5 Zzakdm_nka) nka Zzakdm}\th}

d=1m=1 d=1m=1

Thus, the value of ®(¢) can be expressed as:

P(tr) < max{®y(tr), P2(tr)}

22 2/\~D M 2 <o

d: m=1

2 n2 n D M
sﬂm+kﬂw% wm{?—zz%mm@}

d=1m=1
D& + 0 ng 1y,
:T_Q( { Zzakdm}th}
d=1m=1

By subtracting a fixed term from both sides we get:

D M
‘@(tk)—VE{ Z Z ak,d,m (Ph,dVm + 75)|Q(tk)}

d=1m=1

D&% + 0 T
< 26—; —Q((S {nkk Zzakdm|th}

d=1m=1

D M
VE{ DY akam(Pravm + 75)|Q(75k)}

d=1m=1

D& + ¥ Q(tr) ne Ty,
S { Zzakdm!th}

d=1m=1
—V(Uk +vRi)E{Tk|Q(t)}-

The previous equation holds since the decision of BOLA360 at time ¢ is a solution of the maximiza-
tion equation detailed in Equation (5) and

D M
E{Z Z a5, g (P.avm + 70)Q(tR)} SEB{D D aram(pr.avm + 70)|Q(t)}-
d=1m=1 d=1m=1
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Then, we have

D M
(I)(tk)_VE{ Z Z ke,d,m (Pk,dVm + 75)|Q(tk)}

d=1m=1

D+ Qi) (E{ni} B o1 Gham)
ST T < 5 E{T}} >Eﬁm}

—V(Uk + vRE)E{T:},

where ay ;. is the action of stationary algorithm for tile d and bitrate index m of chunk & which satisfies
the rate 7st7ability constraint. T} shows the length of download time for chunk & while the stationary
algorithm is taking action. Based on rate stability constraint, the second term in the equation above
is always negative,

k=1 k=1 d=1m=1
D&% + 0
<5 K~ V(Ui + 1R )E{T}} K.

By dividing all terms by V' - K - E{T}} and taking the limit K — +o0, the proof is completed,
noting that the total download time is at most Qmax seconds shorter than T, .

Remark 2 (On the conflict between the playback delay and QoE of streaming). Theorem 5.2 states
as the value of V increases, the performance of BOLA360 gets closer to the optimal QoE. However,
Theorem 5.1 reveals that the upper bound on the playback delay increases with higher values of V.
Comparing these results, we observe a trade-off between minimizing playback delay and mazimizing
QoFE in BOLA360. As the playback delay increases, the QoE performance of BOLA360 approaches the
offline optimum.

5.3 Understanding the Behavior of BOLA360

We demonstrate the functionality of BOLA360 through a straightforward test. Our test utilizes a
250-second video, segmented into 5-second chunks. Each chunk further divides into six tiles, each
encoded at distinct bitrates: 2Mbps, 4Mbps, 6Mbps, 8Mbps, 10Mbps, and 15Mbps. To represent
utility values, we employed a logarithmic function v, = log(25,,/51), similar to previous works such
as [43, 16, 44]. While our theoretical results only require a non-decreasing utility function, we opted for
a concave function that better reflects real-world utility functions. The concave utility function exhibits
a diminishing return property, meaning that increasing the bitrate from 1 Mbps to 2 Mbps provides
more utility than increasing it from 10 Mbps to 11 Mbps, even though the bitrate difference is the same
in both cases. In Table 2, we report the utility values generated from logarithmic function, size of tiles,
and available bitrates. For this simple test, we set v = 0.1 and V = 5.5. We note that Uk assesses
the expected utility across various tiles within a chunk, while Rx quantifies the aggregate length of
downloaded tiles. Setting v = 1/D equalizes the significance of utility and smoothness concerning a
single tile.

The head position of the user is represented by a probability distribution that is critical for guiding
the actions of BOLA360. For this test, we evaluate the performance of BOLA360 using two different head
position probability distributions. The first distribution is homogeneous, where each tile is assigned a
uniform probability, resulting in an equal likelihood of the user watching any tile (pyq = 1/D for all
tiles). The second distribution is heterogeneous, with a linear increase in probability from the minimum
to the maximum. Specifically, we set the maximum and minimum probabilities as 0.317 and 0.017,
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Table 2: Available bitrates and utility values used in Section 5.3

Bitrate (Mbps) 2 4 6 8 10 15
Sizes (Mb) 10 20 30 40 50 75
Utility values 1.000 | 2.000 | 2.585 | 3.000 | 3.322 | 3.907

15 15
@ @
£ &
10 10 B
é % JJ —— Avg tiles' bitrate
% 5 ﬂ—é 5 _J‘ Min tiles' bitrate
= — Avg tiles' bitrate = T —— Max tiles' bitrate
/M Decision thresholds /M i Decision thresholds
0 - 0 —
0 50 100 150 200 250 0 50 100 150 200 250
Buffer level (s) Buffer level (s)

Figure 3: The selected bitrate of BOLA360 for tiles with highest and lowest probability and average
selected bitrate as a function of buffer level for homogeneous (left) and heterogeneous (right) distribu-
tions.

Table 3: Two probability distributions used in Section 5.3

Distribution | Probabilities of head direction in an descending order
Homogeneous | 0.166 | 0.166 | 0.166 | 0.166 | 0.166 0.166
Heterogeneous | 0.317 | 0.257 | 0.197 | 0.136 | 0.076 0.017

respectively. The values of p;, 4 for these two head position probability distributions are listed in Table
3. Note that these values are chosen arbitrarily to elucidate BOLA360’s behavior clearly.

Figure 3 shows the maximum, minimum, and average bitrates of downloaded tiles for each chunk
of the video. For the homogeneous distribution, the selected bitrate for all tiles of a chunk is the
same. The results in Figure 4 show that the average download bitrate grows with an increase in buffer
level. We show the threshold values for the buffer level where the action for the tile with the highest
probability changes. In addition, we show the variations of buffer level over time for both homogeneous
and heterogeneous head position probability distributions in Figure 4. When the buffer level is higher

/:/?150 =200 —— Buffer Level
;o/ AN = %/ Decision thresholds
E 100 N7 E
5 s P 100 M s
"5 —— Buffer Level ‘*5
M ol Decision thresholds as} 0 /
0 50 100 150 200 250 0 50 100 150 200 250

Time (s) Time (s)

Figure 4: Buffer level variation over time under bitrate selection of BOLA360 for homogeneous (left)
and heterogeneous (right) distributions.
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Figure 5: Variation of average downloaded bitrates over time under bitrate selection of BOLA360 for
the homogeneous (left), and heterogeneous (right) head position probability distribution.
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Figure 6: Variation of playing bitrate over time under bitrate selection of BOLA360 for the homogeneous
(left), and heterogeneous (right) head position probability distribution.

than V(v - pra + 70), BOLA360 downloads nothing for that tile. Note that increasing the value
of v increases the importance of continuous playback. Increasing the value of v by € is similar to
reducing the buffer level by €52V, resulting in BOLA360 using correspondingly higher threshold values
for the buffer levels for bitrate switches. Therefore, increasing the value of v shifts the bitrate curves
in Figure 3 to the right and vice versa. Lastly, Figure 5 and Figure 6 show the average bitrates of tiles
downloaded across the time and the bitrate of the tiles that user actually sees (playing bitrate) in their
FOV. One can see that BOLA360 responds to the bandwidth change by increasing/decreasing selected
bitrates.

6 Comparison Algorithms

We compare BOLA360 with VA-360 [28], ProbDASH [29], Flare [31]|, Salient-VR [30], Pano [32|, and
Mosaic [33], the leading ABR algorithms for ABR360. Our analysis showcases the advancements our
approach brings over the state-of-the-art. While some of these algorithms like Pano, Flare, and
ProbDASH consider additional factors such as minimizing bitrate variance among tiles within a chunk,
they rely on an MPC algorithm [14] to select the aggregate bitrate for each chunk. This method’s
reliance on estimated bandwidth throughput poses challenges, potentially hindering their ability to
achieve near-optimal QoE, a limitation shared by algorithms like VA-360 and Mosaic. We used the
suggested hyper-parameters from each algorithm’s respective literature.
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Table 4: Available bitrates and utility values of them for experiments of Sections 6.2, and 6.3

bitrate (Mbps) 0.44 0.7 1.35 | 2.14 4.1 8.2 16.5
Sizes (Mb) 0.88 14 2.7 4.28 8.2 16.4 | 33.0
Utility values 1.000 | 1.667 | 2.617 | 3.282 | 4.220 | 5.220 | 6.229

=®= BOLA360 =O=VA-360 =i ProbDash = EF  Salient-VR Flare =i/= Pano Mosaic
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Figure 7: The CDF of normalized QoE (left) and reduction in wasted bandwidth compared with the
ProbDASH (right) for BOLA360 and comparison algorithms using real network and head movement traces.
The QokE of BOLA360 was higher than the QokE of other algorithms in all test trials.

6.1 Experimental Setup

We conduct multiple experiments to demonstrate the algorithms’ performance under different settings.
We use a 500-second video, split into chunks of 2 seconds and 8 tiles. Also, each tile is encoded in seven
different bitrates - 440Kbps, 700Kbps, 1.35Mbps, 2.14Mbps, 4.1Mbps, 8.2Mbps, and 16.5Mbps. Similar
to Section 5.3, we use a logarithmic utility function. The list of available bitrates, size of segments,
and utility values are listed in Table 4. Although BOLA360 performs better using larger buffers, we
limit the buffer capacity to Qumax = 1289, which is equivalent to 32 seconds of 360° playback time, that
falls within the range of suggested buffer capacity for VOD streaming [45, 46] to ensure fairness. We
employ dynamic value selection for A, as proposed in [16], and empirically determine V' = 24.0. Also,
we set v = 0.2 using the parameter selection methodology for v and V' outlined in Section VI of [16].
Consequently, in this scenario, the smoothness term of QoE is equivalent to the utility derived from
downloading tiles at a bitrate of 2.1Mbps (equivalent to 480p resolution). We use 4G bandwidth traces
from [47] and 4G /LTE bandwidth trace dataset [48] collected by IDLAB [49] to simulate the network
condition. We select 14 different traces (network trace index 1 to 14 of the dataset) from 4G/LTE
dataset to evaluate the performance of BOLA360 under different network conditions. The video is stored
on an Apache server. Both server and client use Microsoft Windows, 24GB of RAM, and an 8-core
3Ghz Intel Core-i7 CPU. We use Chrome DevTools API [50] to transfer the video between server and
client and emulate the network condition. We fetch the bandwidth capacity from the 4G/LTE dataset
and inject it into the Chrome DevTools to limit the download capacity between the server and the
client. In our experiments, FOV includes a single tile and unless otherwise mentioned, to capture the
actual FOV of the head position probability values, we generate the navigation graph [38] for 360° video
using public VR head traces [51].
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Figure 8: Average playing bitrate vs. rebuffering ratio (left), the CDF of playing bitrate (midle), and
rebuffering ratio (right) of BOLA360 and comparison algorithms using real network and head movement
traces. The average playing bitrate of BOLA360 is 3.34Mbps, while this value for Salient-VR, and
Mosaic and VA-360 are 3.07Mbps, 2.72Mbps, and 3.35Mbps. The average rebuffering for BOLA360,
Salient-VR, Mosaic, and VA-360 were 0.12%, 0.13%, 0.63% and 0.83%.

6.2 Performance Evaluation using Real Network and Head Movement Traces

First, we compare the performance of BOLA360 with others using real network and head movement
traces. We use a representative real 4G bandwidth trace from [47] for this comparison. We report
playing bitrate, the rebuffering ratio (percentage of length of video considered as a rebuffering), and
normalized QoE (QoE divided by the QoE of optimal offline algorithm) of BOLA360, and state-of-the-
art algorithms. Additionally, we report the reduction in wasted bandwidth—the fraction of bandwidth
used to download unseen tiles—for all algorithms, relative to ProbDASH, which exhibited the highest
wasted bandwidth among the compared algorithms. Note that the average playing bitrate reported in
Figure 8 is calculated over the tiles the user has seen inside FOV. We report the results of 100 different
trials, where for each trial, we sample the user’s head direction from the head position probability
distribution and use the same network traces and algorithm parameters. The CDF plot of average
playing bitrates, rebuffering ratio, and normalized QoE values of 100 different trials is reported in
Figure 7 and Figure 8.

The results in Figures 7 and 8 show that BOLA360 outperforms other comparison algorithms in
QoE, and its playing bitrate was slightly less than the playing bitrate of VA-360, which prepares the
highest playing bitrates among comparison algorithms. VA-360 selects relatively high bitrates for all
tiles of a chunk while BOLA360 efficiently distributes the available bitrates among different tiles such
that BOLA360 can achieve a lower rebuffering ratio. Additionally, the reduction in wasted bandwidth
compared to ProbDASH is illustrated in Figure 7. On average, BOLA360 achieves a 34.3% reduction in
wasted bandwidth compared to ProbDASH.

Key takeaway. BOLA360 outperforms comparison algorithms in terms of QoE as it is designed to
maximize it. Besides, no algorithm outperforms BOLA360 on both playing bitrate and rebuffering ratio

at the same time.

6.3 Impact of Network Bandwidth

In this experiment, we investigate the impact of different network profiles on the performance of ABR
algorithms. We use network traces index 1 to 14 from the 4G/LTE dataset [48| to generate the
bandwidth throughput. We use the same video and algorithm /problem parameters (details in Section
6.1) for all algorithms to capture the impact of the network capacity on their performance.

Figure 9 shows the average normalized QoE, playback delay, rebuffering ratio, and average playing
bitrate of BOLA360 and five comparison algorithms over 100 trials for 14 network profiles. BOLA360
stands as the best algorithm in all 14 experiments. In this experiment, VA-360 selects relatively higher

15



N BOLA360 Mosaic ProbDash Flare N BOLA360 Mosaic ProbDash Flare

3 Salient-VR VA-360 Pano }3 Salient-VR VA-360 Pano

go.x €3 : n

3 i 2 | Hl :[ i 1l gl Bl gl

=06 {f E 2  Ei il Bh  Elt -‘ o o ‘\‘ h I ‘

m04 ‘ l o ‘ H ‘ B H il H i } } H {

£0 [ | NN il il il A D
0.2 | 5 il o0 il it i il i il il il i i

fboo ’ i =9 1l 1 Bl i it ) it Bl ik Bl ‘

Z 9 10 11 g 1 2 3 4 5 8 9 10 11 12 13

thwork profile index < Network profile index

Figure 9: The average normalized QoE (left) and average playing bitrate (right) over the bitrate
selection of BOLA360 and other comparison algorithms for 14 different network profiles and 100 trials.
In terms of QoE, BOLA360 outperforms others in all profiles. On average, BOLA360 provides about 6%
improvement to the QoE of Salient-VR, and 110% to QoE of Flare.
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Figure 10: The average rebuffering ratio (left) and average playback delay (right) over the bitrate
selection of BOLA360 and comparison algorithms for 14 different network profiles and 100 trials. Pano
and Flare usually show higher rebuffering than the other algorithms, while their playback delay is
shorter. The average playback delay for BOLA360 is 14.9 seconds.

bitrates compared to other algorithms, while its high rebuffering, shown in Figure 10, lowers the QoE
of this algorithm. In addition, the playback delay of BOLA360 and comparison algorithms are shown
in Figure 10. The playback delay of VA-360 was the lowest in all experiments. That clearly shows
the trade-off between having low rebuffering or low playback delay. The results show that BOLA360
keeps the playback delay under 14.9 seconds with an average rebuffering ratio of less than 0.4%. This
playback delay is consisent with the result of Theorem 5.1 and the fact that BOLA360 tries to keep
the buffer level high. Additionally, the reduction in wasted bandwidth, as compared to ProbDASH, for
BOLA360 and other comparison algorithms over 100 trials across 14 network profiles is illustrated in
Figure 11. Flare achieves the highest reduction in wasted bandwidth, decreasing it by an average of
58.5%. For BOLA360 and Pano, the reductions were 44.9% and 32.5%, respectively.

Key takeaway. Networks with high fluctuations (e.g., profile indexes 2 and 7) cause a higher
rebuffering ratio; nevertheless, BOLA360 keeps QoE and playing bitrate relatively high in all profiles
and outperforms all alternatives.

6.4 Impact of Head Position Probabilities

The head position probability values directly impact the QoE characterized in Equations (1) and (2);
hence, the performance of algorithms varies depending on these probabilities. To observe the impact
of head position probabilities on the performance of ABR algorithms, we define 12 probability distri-
butions and evaluate the performance of BOLA360 and other algorithms against them while the rest of
the setting is similar to the experiment in Section 6.2. Specifically, for each chunk k, we replace the set
of probabilities with the probabilities calculated from Equation (12). Each head position probability
distribution could be interpreted as a different 360° video file.

We generate the head position probability distributions based on three parameters Dpos(k), 7(k),
and ay, (k). Parameter Dpos(k) shows the number of tiles that there is a chance to be inside FOV for chunk
k; r(k) represents the ratio between the minimum and maximum probabilities among probabilities of
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Figure 11: Reduction in wasted bandwidth com-
pared to ProbDASH over the bitrate selection of
BOLA360 and comparison algorithms using 14 dif-
ferent network distributions over 100 trials. The
reduction of the wasted bandwidth under bitrate
control of BOLA360 was between 31.3% and 59.8%
over different network profiles.
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Figure 12: Reduction in wasted bandwidth com-
pared to ProbDASH over the bitrate selection of
BOLA360 and comparison algorithms using 12 dif-
ferent head position probability distributions over
100 trials. The reduction of the wasted bandwidth
under bitrate control of BOLA360 was between 1.2%
and 49.9%.

Table 5: The details of the probability distributions used in the experiment of Section 6.4

Probability profile index | 1 2 3 4 5|6 7 8 9 10 | 11 | 12
Dpos(k) 8 8 814 | 4 4 4 4 | 2 2
ap(k) 0 05107 |10 051075 | 1 0 |05

co
oo

tiles for chunk k. Last, parameter oy, (k) determines the heterogeneity of the head position probability
values for chunk k. We define the probability of i*" highest probable tile as a function of ap(k) as

follows.
N ap(k)

P D)
where pEL)(kz,r(k‘)) shows the probability of i*" highest probable tile assuming a fixed step between
probabilities in ascending order. With the above definition in Equation (12), a,(k) determines the
range of probabilities where (k) = 0 signifies uniform tile probabilities, while o, (k) = 1 indicates
a wider probability range, reflecting diverse head position probability values. A justification for this
model as a representative of real-world head direction prediction is that (D — Djes) shows the number of
tiles the FOV prediction model is confident that they will be out of FOV. On the other hand, a; (k) shows
how concentrated the FOV prediction model is. We use r(k) = 0.05 for all distributions. Although it’s
impractical to cover every possible distribution, our selection involves a low value for r(k), and wide
range of values for Dy and ay(k) to achieve broader representation. Details of the 12 probability
distributions used in this section are outlined in Table 5.

We report the average normalized QoE, playback delay, rebuffering ratio, and average playing
bitrate of 100 trials of BOLA360 and comparison algorithms using each head position probability distri-
bution profile in Figures 13 (average normalized QoE and playing bitrate), and 14 (average rebuffering
ratio and playback delay). Figure 13 shows that BOLA360 achieves slightly higher QoE when the pre-
diction of FOV is concentrated on fewer number of tiles. A notable observation demonstrates that
BOLA360 kept the QoE at a high value for every probability profile, while the achieved playing bitrate
is promising, and kept rebuffering ratio close to the lowest among all algorithms. Finally, Figure 12
presents the reduction in wasted bandwidth relative to ProbDASH for BOLA360 and other comparison
algorithms, based on 100 trials across 12 different head position probability distributions. The reduc-
tion in wasted bandwidth achieved by BOLA360 ranged from 1.2% to 49.9%, depending on the accuracy
of FOV prediction across these head position probability profiles.

o (k). (12
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Figure 13: The average normalized QoE (left) and average playing bitrate (right) over the bitrate selec-
tion of BOLA360 and comparison algorithms using 12 different head position probability distributions
over 100 trials. On average, BOLA360 provides 9% improvement to the QoE of Salient-VR, and 31%
to QoE of Pano.
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Figure 14: The average rebuffering ratio (left) and average playback delay (right) over the bitrate
selection of BOLA360 and comparison algorithms using 12 different head position probability distri-
butions over 100 trials. VA-360 usually results in a high rebuffering ratio and short playback delay.
Meanwhile, the rebuffering ratio of BOLA360 is slightly more than the lowest in all experiments. The
average playback delay for BOLA360 is 11.1 seconds.

Key takeway. The playing bitrate of BOLA360 and most comparison algorithms improves when
the head position prediction is concentrated on fewer tiles. Meanwhile, BOLA360 improves the playing
bitrate more than other comparison algorithms as the head position values concentrate on fewer tiles.

6.5 Discussion on the Performance of Predictions-based Baseline Algorithms

This section provides details on why the baseline or state-of-the-art algorithm used in Section 6.1 may
fail to perform well in particular scenarios, and they cannot guarantee their performance in the worst-
case scenario. All of VA-360, ProbDASH, Flare, Pano, and Salient-VR algorithms take action based on
the prediction of bandwidth that is given to them. The accuracy of this prediction significantly impacts
the performance of these algorithms such that a prediction with an error may result in a significant
difference between the performance of the ABR algorithm and the performance of the optimal offline
solution. In addition, these algorithms behave similarly to the ABR360 with different values of ~. For
example, for tiny values of «, the bitrate level of the segments are much more important to the user
than the smoothness of streaming. However, these algorithms take similar actions as they take in the
case of a large value of ~.

7 BOLA360 Enhancements

BOLA360 is meticulously designed to excel under all conceivable network conditions, including the most
challenging worst-case-like scenarios. The aim to achieve a satisfactory performance across all input,
however, makes BOLA360 often operate conservatively, refraining from switching to higher bitrates
in many real-world situations where worst-case conditions fail to materialize. In this section, we
propose BOLA360-REP and BOLA360-PL, two heuristic algorithms to improve the practical performance
of BOLA360 could be improved from two perspectives. First, we introduce BOLA360-PL to address the
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common drawback of buffer-based ABR algorithms in fetching low-quality bitrates during start or seek
time or high oscillations time intervals. Secondly, we propose BOLA360-REP to add the tile upgrade
into the BOLA360. The basic BOLA360 algorithm is not designed to replace previously downloaded tiles
with higher bitrates, further restricting its adaptability.

BOLA360-PL is a generalized version of BOLA-PL introduced in [34]. It aims to reduce the reaction
time of the BOLA360 during start and seek times by virtually increasing the buffer level at the start
or seek time. The reaction time is the duration from when the first tile is fetched (during start time)
or the first seek tile is fetched (during seek time) until bitrate of selected tiles stabilizes. BOLA360-PL
estimates the bandwidth and multiplies it by 50% to establish a safe expected bandwidth. To prevent
rebuffering, BOLA360-PL limits the bitrate of each tile based on the estimated bandwidth throughput.
More specifically, it restricts the size of the entire chunk to Sy, = Q(t)w,(t)/2D, where wy(t) denotes
the predicted bandwidth capacity at time ¢. BOLA360-PL virtually inserts a proportional number of
tiles into the buffer such that the size of the new downloading chunk does not exceed Sy, .

One of the primary limitations of the basic version of the BOLA360 algorithm is its inability to
modify previously downloaded tiles. Specifically, BOLA360 must make decisions about tiles of future
chunks, and it cannot replace higher bitrate tiles with previously downloaded, lower quality ones. If
the bandwidth capacity experiences a short-term decrease, BOLA360 adjusts the download bitrates to
match the new bandwidth capacity by switching to lower bitrates. When the bandwidth increases
again, BOLA360 may have already downloaded several tiles with low bitrates, and it cannot replace
them with higher quality ones, even if the buffer level and bandwidth capacity are high. Consequently,
BOLA360 cannot utilize the entire bandwidth opportunity to optimize QoE. This challenge is addressed
by the heuristic called BOLA360-REP.

BOLA360-REP is a variant of BOLA360 that allows for the modification of previously downloaded
tiles. Specifically, BOLA360-REP determines whether to download tiles for the next chunk or improve
the quality of previously downloaded tiles, depending on the available video length in the buffer.
BOLA360-REP uses a danger threshold set at 20 and downloads tiles for a new chunk if the available
video length in the buffer, Qu(t), is below this threshold. If Q. (t) exceeds the danger threshold,
BOLA360-REP replaces previously downloaded tiles with higher bitrates.

When deciding to download tiles for a new chunk, BOLA360-REP selects bitrates according to
BOLA360’s decisions. If the decision is to replace previously downloaded tiles, BOLA360-REP identi-
fies tiles where there is at least a two-level difference between the current bitrate and what BOLA360
would select at the current buffer level. BOLA360-REP then downloads and replaces those low-quality
tiles. If no low-quality tiles are detected, BOLA360-REP proceeds to download tiles for the next chunk
as usual. Overall, BOLA360-REP addresses the limitations of BOLA360 and enhances the quality of
experience for users.

7.1 Experimental Setup

We use the parameters from Section 6.4 and the head position probability profile 2 defined therein to
evaluate the performance of the heuristic extensions, BOLA360-PL and BOLA360-REP. These algorithms
are tested under two scenarios: 1) accurate head position probability predictions, and 2) noisy pre-
dictions for future chunks. In the first scenario, the head position probabilities provided to the ABR
algorithms match the actual head position distribution of the user. This implies that the algorithm
has perfect knowledge of the user’s head position distribution, even for chunks that will be played far
in the future.

In contrast, the second scenario assumes a 10% error in the prediction of head position probabilities
for every § seconds difference between the current chunk and the chunk for which the ABR algorithm
is trying to predict head position probabilities. If the prediction error exceeds 100%, the head position
prediction is considered unreliable, and the ABR algorithms are instead provided with uniform head
position probabilities, where py q = 1/D. In this case, if the ABR algorithm maintains a high buffer
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Figure 15: The CDF of the average bitrate of any downloaded tile (left), reaction time (middle), and
oscillation (right) of basic BOLA360 and BOLA360-PL using real network and head movement traces.
BOLA360-PL reduces the oscillation and reaction time by 70.9% and 67.8% respectively.
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Figure 16: The CDF of average bitrate of downloaded tiles (left), reaction time (middle), and oscillation
(right) of basic BOLA360, BOLA360-PL, and BOLA360-REP using real network and head movement traces
while the prediction of the head position dynamically got updated. BOLA360-REP improves the average
bitrate of downloaded tiles up to 91.2% compared to BOLA360 BASIC, and reduces the reaction time

by 80.0%.

utilization, there would be a long period of time between download time and playback time of each
chunk. This long period leads to noisy prediction of head position probabilities at the time of download,

resulting in reduced QoE for the user.

7.2 Experimental Results

Figure 15 shows the CDF plots of the average tiles’ bitrate (left), the reaction time (middle), and
oscillation (right, the average difference between the bitrate of two consecutive chunk for each tile)
of 100 trials for accurate head position probability predictions. The results show that BOLA360-PL
significantly reduces the oscillation and reaction time of BOLA360. Since the BOLA360-PL improves the
bitrate of tiles during start and seek time, and these tiles are a low fraction of the entire video, the
average bitrate of tiles that BOLA360-PL prepared for the user is slightly better than the average bitrate
of tiles BOLA360 downloads.

In Figure 16, we report the result of the evaluation of BOLA360 and heuristic versions against the
noisy prediction of head positions. Specifically, we report the CDF plot of the average tiles’ bitrate,
reaction time, and the oscillation of BOLA360, BOLA360-PL, and BOLA360-REP. The results show that the
average bitrate of BOLA360 and BOLA360-PL reduced compared to the case where accurate head position
probabilities were available. On the other hand, BOLA360-REP improves the average bitrate of BOLA360
up to near 97.6% and reduces the reaction time of BOLA360 by 80.0%. Although BOLA360-REP could
improve the average bitrate and the reaction time, it increases the oscillation. The average oscillation
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time for BOLA360 was 1.6 seconds, while this value for BOLA360-REP was 4.5 seconds. Meanwhile, all
two heuristic versions could keep the rebuffering as low as the rebuffering of BOLA360.

Key takeaway. Fach extension of BOLA360 improves the performance in certain aspects, such as
bitrate or reaction time. However, each version has drawbacks that may result in lower performance
in other aspects. Therefore, no version outperforms the others in all aspects, and depending on the
application and user requirements, different versions may be suitable.

8 Related Work

The prior literature extensively addresses the problem of bitrate and view adaptation in 360° video
streaming. Previous works commonly employ various machine learning techniques to predict user head
movements and network throughput, incorporating these predictions into ABR algorithms [52, 31, 53,
54, 55, 56, 57, 58, 59, 60]. For example, [31] proposes a prediction-based approach and designs an
ABR algorithm using historical data from 360° video streaming sessions. The focus of their work is
on head movement prediction, while the ABR algorithm itself is a heuristic approach lacking rigorous
optimization-based mechanisms.

Authors in [61] propose a Lyapunov-based model to solve the ABR360 problem, also utilized in [62].
They employ Lyapunov optimization for selecting and adjusting the bitrate of tiles, resulting in a nearly
optimal ABR algorithm achieved through iterative updates to the tiles of a chunk. However, despite its
near-optimality, this technique may suffer from a long reaction time and high wasted bandwidth due
to iterative bitrate adjustment. In another work, [63] proposes a different approach by constructing
a two-layered hierarchical buffer-based algorithm with short and long buffer layers. The prediction of
FOV is used to perform short-term improvement. The long buffer layer tries to download the new tiles
that are not available in the short buffer layer and will be played later. In another work, [64] predicts
the head movement by using a saliency map, tile probability heat map, and LSTM models and gives
ABR360 algorithm based on that.

In another category of work [65, 66, 67, 68, 17, 69|, deep RL-based algorithms are developed for
solving ABR360. They also use a dataset of the user’s head position to train the model and find the
optimal bitrate selection according to the predicted FOV.

In a recent study [70], the authors proposed a non-uniform coding and transmission method that
divides the entire 360-degree field into four regions: an attention area, an out-of-field-of-view area, a
peripheral area, and other areas. They then introduced an online ABR algorithm that dynamically
selects appropriate bitrates for each region. This work was further extended by another study [52] that
optimized the transmission strategy for 360-degree videos using LSTM networks.

In [71], FOV prediction is used to select proper bitrates for tiles in a predicted FOV, with the accuracy
of prediction impacting the final bitrate selection. Other works such as |72, 30, 40, 73, 29] also focus
on FOV prediction. The main idea is that users have similar region-of-interest when watching the same
video. They divide the users into clusters such that users inside each cluster have similar region-of-
interest in most videos. Then they give FOV prediction based on the cluster of a given user and the
historical head direction traces of users in a predicted cluster. While these approaches help reduce
bandwidth waste, they still require an ABR algorithm to select bitrates within the predicted region.
In contrast, BOLA360 is an online algorithm with rigorous performance guarantees, solving the ABR360
problem optimally. Guan et al. [32] employ Model Predictive Control (MPC) to select the aggregate
bitrate for a chunk, allocating it among tiles to maintain quality within the limited bitrate. In another
category of research [74, 75|, an optimized coding/encoding algorithm minimizes bandwidth usage
for 360° videos, evaluated using real 4K and 8K videos from YouTube. Their experiments use a
straightforward ABR algorithm resembling ProbDASH (Section 6).
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9 Conclusion and Future Directions

In this paper, we formulated an optimization problem to maximize users’ QoE in 360° video streaming
applications. We proposed BOLA360, an online algorithm that achieves a provably near-optimal solu-
tion by selecting a proper bitrate for each tile of a 360° video to maximize quality while minimizing
rebuffering rate. Our experimental results demonstrate that BOLA360 outperforms several alternative
algorithms across various network and head movement profiles. In future work, we aim to develop a
data-driven and robust version of BOLA360 that explicitly uses future predictions in decision-making
while maintaining the algorithm’s theoretical performance guarantees.
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