
BOLA360: Near-optimal View and Bitrate Adaptation for 360-degree

Video Streaming

Ali Zeynali∗ Mohammad Hajiesmaili† Ramesh K. Sitaraman‡

September 11, 2023

Abstract

Recent advances in omnidirectional cameras and AR/VR headsets have spurred the adoption
of 360° videos that are widely believed to be the future of online video streaming. 360° videos allow
users to wear a head-mounted display (HMD) and experience the video as if they are physically
present in the scene. Streaming high-quality 360° videos at scale is an unsolved problem that is
more challenging than traditional (2D) video delivery. The data rate required to stream 360° videos
is an order of magnitude more than traditional videos. Further, the penalty for rebuffering events
where the video freezes or displays a blank screen is more severe as it may cause cybersickness.
We propose an online adaptive bitrate (ABR) algorithm for 360° videos called BOLA360 that runs
inside the client’s video player and orchestrates the download of video segments from the server
so as to maximize the quality-of-experience (QoE) of the user. BOLA360 conserves bandwidth by
downloading only those video segments that are likely to fall within the field-of-view (FOV) of the
user. In addition, BOLA360 continually adapts the bitrate of the downloaded video segments so
as to enable a smooth playback without rebuffering. We prove that BOLA360 is near-optimal with
respect to an optimal offline algorithm that maximizes QoE. Further, we evaluate BOLA360 on a
wide range of network and user head movement profiles and show that it provides 13.6% to 372.5%
more QoE than state-of-the-art algorithms. While ABR algorithms for traditional (2D) videos have
been well-studied over the last decade, our work is the first ABR algorithm for 360° videos with
both theoretical and empirical guarantees on its performance.

∗University of Massachusetts Amherst. Email: azeynali@cs.umass.edu.
†University of Massachusetts Amherst. Email: hajiesmaili@cs.umass.edu.
‡University of Massachusetts Amherst & Akamai Technologies. Email: ramesh@cs.umass.edu.

ar
X

iv
:2

30
9.

04
02

3v
1

 [
cs

.M
M

]
 7

 S
ep

 2
02

3

Figure 1: (a) Users watch 360° videos by moving their viewport to point to any direction in the
enclosing sphere (b) the sphere is broken up into tiles and each tile in the user’s FOV is streamed as
a sequence of segments [6].

1 Introduction

With recent advancements in omnidirectional cameras and AR/VR headsets, users can enjoy 360°
media like YouTube 360 [1], virtual reality video games [2, 3], and augmented reality applications like
Google AR/VR [4]. Users either wear a head-mounted display (HMD) or use a device that allows
them to change their viewport and field-of-view (FOV)1 when watching a 360° video (see Figure 1).
For instance, a user watching world cup soccer as a 360° video can wear an HMD and watch the game
by changing their head position as if they were actually in the stadium.

The rapid increase in the popularity of 360° videos is driven in part by the wide availability of VR
headsets that has grown more than five-fold in the past five years to reach nearly 100 million units in
use [5]. A second trend driving the popularity of 360° videos is the wide availability of omnidirectional
cameras that make it easy to create 360° video content. While the promise of providing an immersive
experience has made 360° videos the holy grail of internet video streaming [6], providing a high quality-
of-experience to users while delivering those videos at scale over the internet is a major unsolved
problem and is the main motivation of our work.

Tiled video delivery. The 360° videos are created and stored in servers and delivered to the
users (i.e., client) in an online fashion. A common approach to 360° video delivery is to divide the
viewing sphere of the user into a set of tiles (see Figure 1). Each tile is stored as a sequence of video
segments, where each video segment can be played for a fixed duration of δ (say, δ = 5) seconds. Each
segment is encoded in multiple bitrates (i.e., resolutions) so that the quality of the segments sent to
the user can be adapted to the available bandwidth between the server and the client, a feature known
as “adaptive bitrate streaming”. Video segments are streamed from the server ahead of time and
buffered at the client before they can be rendered to the user. As the user changes their viewport, say
by moving their head, the appropriate segments for the tiles within the user’s FOV is extracted from
the client’s buffer and rendered on the user’s display.

Challenges of 360° video delivery. A key challenge in delivering 360° videos is that they are
an order of magnitude larger in size than a traditional (2D) videos [7, 8, 9]. The reason is that there
are multiple tiles required to cover the 360° viewing sphere, with each tile encoded in multiple bitrates
in a manner similar to a 2D video. Further, a high resolution of 4K to 8K is recommended for viewing
AR/VR media [8]. Thus, the data rate of a 360° video that delivers a 4K stream to each eye (x2)
and allows the user to watch the full 360° viewing sphere (x8 tiles, say) is 400 Mbps, compared to
about 25 Mbps for a traditional 4K video. In fact, the data rate of such a 360° video is an order of
magnitude larger than the US’s average last-mile bandwidth [10, 11]. Additionally, when the user’s
viewport changes, say due to a head movement, the new segments that fall within the user’s new FOV

must be rendered within a latency of a few tens of milliseconds, so as to not cause a rebuffering event
that results in showing either an incorrect/stale segment or no segment at all (i.e., blank screen). If

1Field of view is the spatial area that falls within the viewport of the user’s device. A user sees only the portion of
the 360° video that is within the FOV.

1

the “motion-to-photon” latency exceeds a few tens of milliseconds, the user experiences a degraded
quality-of-experience, or even cybersickness [6].

Adaptive bitrate (ABR) algorithms for 360° videos. To ameliorate the challenge imposed by
the size of the 360° videos, we study adaptive bitrate (ABR) algorithms that run on the client’s device
and orchestrate the download of the video segments from the server. ABR algorithms for traditional
(2D) videos is a well-studied problem with more than a decade of research [12, 13, 14, 15, 16, 17, 18].
In the traditional 2D video setting, ABR algorithms primarily adapt the bitrates of the downloaded
segments to the available client-server bandwidth, ensuring that the video plays continuously without
rebuffers (i.e., freezes). ABR algorithms for 360° videos are considerably more complex since they must
simultaneously perform two types of adaptations. First, the algorithm must perform view adaptation
by predicting ahead of time where the user’s head position might be and what tile(s) the user may
view in the future. Second, the algorithm must perform bitrate adaptation by deciding what bitrates
to download the segments of the predicted tiles. Importantly, these two types of adaptations must be
optimized jointly since tiles that are more likely to be in the user’s viewport should be downloaded at
higher bitrates.

Why naive ABR solutions do not work. A naive ABR algorithm divides the available client-
server bandwidth equally among all tiles of the 360° video, resulting in downloading a segment for
all tiles. While this prevents rebuffering since there is a downloaded segment for each tile, it leads
to lower video quality and wasted segments that are never viewed. An alternative approach predicts
the tile(s) the user is likely to watch and downloads segments only for those tile(s). This reduces the
number of segments downloaded, allowing for higher quality. However, it is prone to rebuffering if the
user watches unpredicted tile(s) for which no segments were downloaded [19, 20, 21, 22, 23, 24, 25, 26].
The provably near-optimal approach that we propose balances these two naive extremes to achieve
both high quality and lower rebuffering.

Our Contributions. We leverage Lyapunov optimization techniques to achieve both high bitrates
and low rebuffering by judiciously downloading higher-quality segments for tiles that are more likely
to be in the FOV of the users, while using lower-quality segments for the rest of the tiles as a hedge
against rebuffering. Our algorithm, BOLA360, is the first provably near-optimal ABR algorithm for 360°
videos that also empirically performs better than state-of-the-art algorithms. We make the following
specific contributions.

1) We formulate maximizing the quality-of-experience (QoE) of 360° videos as an optimization
problem that we call ABR360. We model QoE as a weighted sum of two terms, one term relates to
the quality (i.e., bitrate) of the video segments viewed by the user, and the other term relates to
continuous video playback without rebuffers.

2) We present BOLA360, an algorithm that finds a near-optimal solution for ABR360 in an online
manner without the future knowledge of uncertain inputs. In each round, BOLA360 selects a suitable
bitrate for each tile based on the current buffer utilization. Further, there are multiple parameters in
BOLA360 that could be tuned to improve the performance under different conditions and environments.

3) We analyze the performance of BOLA360 and show that (i) it never violates the buffer capacity
of the client (Theorem 1), and (ii) its average QoE is within a small additive constant factor of the
offline optimum of ABR360 (Theorem 2), the additive factor goes to zero when the buffer size goes to
infinity. Further, let playback delay be the time elapsed from when a video segment is downloaded
by the client to when it is rendered to the user. Our theoretical analysis reveals a tradeoff between
playback delay and QoE of BOLA360, i.e., one needs to tolerate a longer playback delay to achieve
better QoE (Remark 2).

4) We implement BOLA360 on a simulation testbed and evaluate its performance extensively using
both real and synthetic data traces. Using trace-based simulations, we compare BOLA360 with both
baseline and state-of-the-art algorithms used in VA-360 [27], 360ProbDASH [28], Salient-VR [29],Flare
[30], and Pano [31]. Our results show that BOLA360 achieves a QoE that is better than the best

2

Figure 2: One shot from the entire spatial area of 360° video and FOV of user in that

alternative by average 13.6% over 14 real network profiles (Figure 6) and 30.3% over multiple videos
and 12 different head position probability distributions (Figure 8).

5) Finally, we consider two extensions to BOLA360 that are relevant in specific real-world situa-
tions [32]. While BOLA360 exhibits impressive performance in terms of achieving high QoE, average
playing bitrate, and rebuffering ratio, there is additional room to improve the QoE by adding heuris-
tics on top of the basic design of BOLA360. Toward this, we improve BOLA360 by including minimizing
fluctuations in the bitrate of rendered segments or ensuring swift responses to network conditions.
To address these areas and enhance the practical performance of BOLA360, we propose two innovative
heuristics: BOLA360-PL, and BOLA360-REP, each targeting specific drawbacks of the original algorithm.
Our experimental results reveal substantial enhancements achieved by two heuristics. Specifically,
BOLA360-PL reduces reaction time by up to 67.8%, and BOLA360-REP significantly improves both play-
ing bitrate and reaction time by 91.2% and 80.0% respectively, especially when coupled with short-term
head position predictions. These heuristics provide highly efficient and practical solutions, surpassing
the performance of the original algorithm.

Roadmap. The rest of paper is organized as follows. We introduce our system model and
formulate the ABR problem in Section 3. Using a Lyapunov optimization approach, we develop
BOLA360 and prove that it is near-optimal in Section 4. We empirically analyze the behavior of
BOLA360 in Section 5 and evaluate its performance in Section 6. Next, in Section 7, we introduce two
additional versions of BOLA360 which practically improves the performance of BOLA360. Finally, we
review related work in Section 8 and conclude in Section 9.

2 Background

ABR Algorithm for 360° Videos. Tile-based 360° videos temporally slice the video into chunks.
Each chunk is split into multiple segments to cover entire 360° spatial area. The user’s screen includes
multiple tiles and each segment represents a short fraction of video for a particular tile. Usually, each
segment is encoded in multiple quality levels or bitrates for video streaming. The ABR algorithm for
360° video has to select the bitrate of segment for each tile before downloading it. So, the action of
the online ABR algorithm for each chunk is a list of selected bitrates for each tile.

Field of View [FOV]. A 360° video is encoded in the full 360° visual sphere. However, the human
eye’s field of vision covers about 130°[33]. Therefore, the user interacting with the 360° video cannot
see the entire spatial area of the presented video. The part of the 360° video inside the user’s visible
region is called Field of View or FOV. Figure 2 shows an example of a FOV that consists a subset of
tiles of the full sphere of the 360° video seen by the user. We use the term view to refer to the group
of tiles inside the FOV. When the user interacts with 360° video with a VR headset (say), the user can
arbitrarily change the FOV and view by moving their head,.

Navigation Graph. Navigation Graph for 360° videos introduced in [34] for the first time and is
used to represent the probability of users transitioning from each view to another view as they watch
the 360° video. Each node (k, v) of the graph corresponds to a kth chunk of the video and view index
v. Also, an weighted edge e = {k, vi, vj} from node (k, vi) to node (k+ 1, vj) shows the probability of
jumping from view vi to view vj while the chunk k is playing. Usually, the navigation graph is used

3

to keep the historical head direction traces of multiple users against a single video or historical head
direction traces of a single user against multiple videos. Every time the user interacts with a video
and jumps from view vi to view vj at chunk k the weight of edge e = {k, vi, vj} get updated.

3 System Model and Problem Formulation

The 360° Video Model. We consider a 360° video as a sequence of K chunks, where each chunk
represents δ seconds of the playback time. Each chunk is further partitioned into D segments to cover
the entire 360° spatial area. Each segment represents δ seconds of video for a particular tile of the
screen. Moreover, each segment is encoded in M different bitrates, all of which are available at the
server; the higher the bitrate, the larger the size in bits. Let Sm denote the size of a segment with
bitrate m. We define vm as the utility value the user gets by watching a tile playing a segment with
bitrate m. Therefore, we have the following inequality.

S1 ≤ S2 ≤ ... ≤ SM ⇔ v1 ≤ v2 ≤ ... ≤ vM .

During the playback time of each chunk, the user views only a subset of tiles, which is their FOV. The
bitrate of tiles inside the FOV directly impacts the QoE. On the other hand, downloading segments
for tiles out of FOV wastes the bandwidth capacity. A key challenge is that the FOV is unknown to
the bitrate selection algorithm at download time. As a result, the online bitrate selection algorithm
must predict the FOV and download the segment for tiles based on its prediction. Let pk,d denote the
probability of the tile d is inside FOV while playing kth chunk. We assume that these probability values
are given from a prediction based on the previous user’s watching the video [35, 19, 36, 29, 34], or from
a chunk analysis of the content [37, 38]. For simplicity, we assume that the FOV includes a single tile
and

∑D
d=1 pk,d = 1. The algorithm’s design could be straightforwardly extended to include multiple

tiles for the FOV of the user.

Problem Formulation. In what follows, we formulate ABR360, an online optimization problem for
the bitrate and view adaptation of 360° video streaming. In ABR360, the objective is to maximize
the expected quality of experience (QoE) of the user, including two terms: 1) the utility term that
is related to quality of the video watched by the user, such utility is an increasing function of the
quality of the segment, and 2) the smoothness of streaming term that captures continuous playback
without rebuffering. The first term directly depends on the bitrate downloaded by the streaming
algorithm, i.e., the higher the bitrate, the higher the utility. The second term captures the expected
smoothness of video streaming. Rebuffering happens when at least one of the segments inside FOV

is not completely downloaded during playback time. Note that the above two terms conflict with
each other. To maximize the utility, an ABR algorithm must download the highest possible bitrate
segments. However, to maximize the expected continuous smooth playback, the ABR algorithm must
download low-bitrate segments. Thus, to maximize the sum of both terms, the ABR algorithm must
balance the two conflicting requirements.

We now formulate QoE mathematically captures the utility as the sum of the two terms UK and
RK . UK represents the time-average expected playback utility the video player prepares for the user
over the sequence of segments and is defined as follows.

UK =

∑K
k=1

∑D
d=1

∑M
m=1 E{ak,d,m.pk,d . vm}
E{Tend}

, (1)

where Tend is the moment video player finishes playback time of the last chunk, and ak,d,m is a binary
optimization variable in the ABR360 problem: ak,d,m = 1 if segment with bitrate m is selected to
download for tile d of chunk k; 0, otherwise. Let tk denotes the time the video player completes the

4

download of segments that belong to chunk k − 1 and decides about the segments of kth chunk. And
Tk shows the time interval between finishing downloading chunks k − 1 and k, i.e., Tk = tk+1 − tk. In
Equation (1), pk,d is the probability of the tile d being inside FOV during playback time of kth chunk.

The second QoE term is denoted by RK , which targets the playback smoothness as follows.

RK =

∑K
k=1

∑D
d=1

∑M
m=1 E{ak,d,mδ}

E{Tend}
, (2)

That is, RK is the ratio of expected playback length of downloaded segments of video and the length
of the streaming. Note that a low value for Rk when the the download time (denominator) is larger
than the playback length of the segments (numerator) will result in rebuffering. Thus a large value of
Rk is a measure of continuous play. In contrast to Uk, RK has an inverse relation with the download
time (or the bitrate), so it decreases with higher bitrates. Note that the expectations in Equation (1)
and Equation (2) are over different possible decisions BOLA360 may take.

We use the coefficient γ > 0 to set the relative importance of the two terms in the user’s final QoE,
i.e., γ provides an opportunity to tune the relative importance of high-bitrate streaming with respect
to a continuous streaming experience. We formulate the ABR360 problem as follows.

[ABR360] max UK + γRK (3a)

s.t.,

M∑
m=1

ak,d,m ≤ 1, ∀d, k, (3b)

Q(tk) ≤ Qmax, (3c)

vars., ak,d,m ∈ {0, 1}. (3d)

Constraint (3b) limits to downloading at most one segment for each tile of a chunk. The second
constraint (3c) enforces the buffer capacity constraint. In this constraint, Q(tk) is the buffer level
at time tk and includes the number of segments available in a buffer at time tk. Qmax is the buffer
capacity and depicts the maximum number of segments stored in the buffer. Since the number of
segments downloaded for each chunk is not fixed, the actual number of segments that drain out from
the buffer when a chunk is played can vary from chunk to chunk. To capture this, let nk be the average
number of segments downloaded for chunks played during downloading of chunk k. The evolution of
the buffer level is characterized as

Q(tk+1) = max[Q(tk)−
nkTk

δ
, 0] +

D∑
d=1

M∑
m=1

ak,d,m, (4)

where the first term refers to the number of segments removed from the buffer during the download
time of chunk k and the second term shows the number of segments recently downloaded.

Remark 1. For regular 2D videos with D = 1, number of segments that drain out of the buffer when
each chunk is played fixed, nk = 1. In this particular case, min[Q(tk),

Tk
δ] segments get drained out of

the buffer after passing Tk seconds.

4 BOLA360: An Online ABR Algorithm for 360° Videos

In this section, we propose BOLA360, a Lyapunov-based algorithm that finds a near-optimal solution
to ABR360. BOLA360 is an online algorithm and its decisions do not require the knowledge of future
bandwidth values.

5

Algorithm 1: BOLA360 (k)

1 a(k): A decision vector that maximizes the value of η(k, a(k)) defined in (5a) with respect to
single-bitrate constraint (5b) for chunk k;

2 if number of non-zero elements in a(k) > 0 then
3 Download bitrates according to a(k) and finish the decision making about chunk k;
4 end
5 else
6 Wait for ∆ seconds and repeat the bitrate selection for this chunk again;
7 end

4.1 Design and Analysis of BOLA360

The design of BOLA360 is based on three key ideas. First, BOLA360 finds a solution for a single-slot
maximization problem that leads to a near-optimal solution for the original long-term problem over
K chunks. Second, the single-slot decision of BOLA360 is based on the buffer level; the higher the
current buffer level, the higher the selected bitrate for download. This is intuitive since a high buffer
level indicates that the input rate into the buffer was higher than the output rate from the buffer, so
the algorithm has more freedom to download high-quality segments and reduce the input rate of the
buffer. Third, BOLA360 uses a threshold as the indicator of high buffer utilization, and by reaching
the threshold, it moves to an idle state and waits until the buffer level decreases again. This approach
limits the buffer utilization of BOLA360. It is worth noting that at the beginning and with an empty
buffer, BOLA360 starts downloading low bitrates.

With the above three key ideas, we now proceed to explain the technical details of BOLA360.
BOLA360 uses an input parameter V that controls the trade-off between the performance of the al-
gorithm and the maximum acceptable buffer utilization of the algorithm. Note that parameter V
also plays a critical role in the playback delay, i.e., for real-time streaming, smaller values of V are
preferable, while in an on-demand streaming application, the larger values of V are acceptable. At
the decision time tk for segment k, the buffer level Q(tk) and head position probability values encoded
in pk,d are given. BOLA360 selects the bitrates for segments of chunk k by solving the maximization
problem described in the following.

max
a(k)

η(k, a(k)) =

D∑
d=1

M∑
m=1

ak,d,m
(
V (vm . pk,d + γδ)−Q(tk)

)
Sm

(5a)

s.t.,
M∑

m=1

ak,d,m ≤ 1, ∀k, d, (5b)

vars., ak,d,m ∈ {0, 1}, (5c)

where a(k) is a decision vector of the BOLA360 and

0 < V <
Qmax −D

vM + γδ
,

is a control parameter that is bounded the R.H.S term to guarantee the required buffer level for
BOLA360 is less than Qmax. Constraint (5b) limits BOLA360 to download at most one segment for
each tile. BOLA360 selects the near-optimal bitrates of chunk k by finding a decision vector a(k) =
[ak,1,1, ak,1,2, ..., ak,1,M , ak,2,1, ..., ak,D,M] that maximizes the value of η(k, a(k)) in Equation (5a). When
the buffer level exceeds V (vM + γδ), the algorithm decides to wait and download nothing (entering
idle state). In this situation, BOLA360 waits for ∆ seconds and repeats the bitrate selection for that

6

chunk again. The selection of ∆ could be dynamic as suggested in [17], the algorithm waits until the
buffer level reaches Q(t0) ≤ V (vM + γδ). We note that our theoretical analysis is valid even with a
dynamic waiting time. The pseudocode for action taken by BOLA360 for segment k is described in
Algorithm 1.

4.2 Theoretical Analysis of BOLA360

Our theoretical analysis first provides an upper bound for the buffer level while running BOLA360 in
Theorem 1. Second, in Theorem 2, we show the QoE of BOLA360 is within a constant term of the
optimal QoE of ABR360. The theoretical results reveal an interesting trade-off between the QoE and
the playback delay of the BOLA360, which is discussed in Remark 2.

Theorem 1. Under bitrate control of BOLA360, the buffer level never exceeds V (vM + γδ) +D,

Q(tk) ≤ V (vM + γδ) +D, (6)

A proof of Theorem 1 is given in Appendix A.

Theorem 2. Let OBJ be the QoE achieved by BOLA360. For a large video, i.e., K → ∞,

OBJ∗ − Dδ2 +Ψ

2V δ2
σ ≤ OBJ, (7)

where OBJ∗ = U∗
K +γR∗

K is QoE of the offline optimal algorithm, and σ = 1/E{Tk} and Ψ ≤ E{DT 2
k }.

That is, BOLA360 is achieves a QoE that is within an additive factor of the offline optimal.

A proof of Theorem 2 is given in Appendix B. Our theoretical analysis assumes that the number of
chunks is very large for the video, i.e., K → ∞. Note that this assumption is needed for the theoretical
analysis, and the algorithms do not need such an assumption.

Remark 2 (On the conflict between the playback delay and QoE of streaming). Theorem 2 states
as the value of V increases, the performance of BOLA360 gets closer to the optimal QoE. However,
Theorem 1 reveals that the upper bound on the playback delay increases with higher values of V .
Comparing these results, we observe a trade-off between minimizing playback delay and maximizing
QoE in BOLA360. As the playback delay increases, the QoE performance of BOLA360 approaches the
offline optimum.

5 Understanding the Behavior of BOLA360

To understand the detailed behavior or BOLA360, in this section, we evaluate the actions and perfor-
mance of the BOLA360 using a trace-based simulation with synthetic traces. In the next section, we
conduct a comprehensive study comparing BOLA360 with other state-of-the-art algorithms using both
real and synthetic trace data.

5.1 Experimental Setup

We conducted our experiments using a video with a duration of 250 seconds, divided into chunks
of 5 seconds each. Each chunk is further divided into six tiles, and each segment is encoded at six
different bitrates. To represent utility values, we employed a logarithmic function, similar to previous
works such as [39, 17, 40]. While our theoretical results only require a non-decreasing utility function,
we opted for a concave function that better reflects real-world utility functions. The concave utility
function exhibits a diminishing return property, meaning that increasing the bitrate from 1 Mbps to

7

Table 1: Available bitrates and utility values

Bitrate (Mbps) 0.2 0.4 0.6 0.8 1 1.5

Sizes (Mb) 1 2 3 4 5 7.5

Utility values 0.000 0.693 1.099 1.386 1.609 2.015

Figure 3: The selected bitrate of BOLA360 for tiles with highest and lowest probability and average
selected bitrate as a function of buffer level for homogeneous (left most) and heterogeneous (second
left) distributions, and buffer level variation over time for homogeneous (third left) and heterogeneous
(right most) distributions. Marked threshold values show the buffer levels where the bitrate for tile
with highest probability changes.

2 Mbps provides more utility than increasing it from 10 Mbps to 11 Mbps, even though the bitrate
difference is the same in both cases. In Table 1, we present the utility values generated using the
logarithmic function vm = log(Sm/S1). It is important to note that this utility function assigns a zero
utility value to the lowest available bitrate. Although selecting the lowest bitrate does not affect the
value of UK , its positive impact on RK makes it a better choice compared to not downloading any
segment at all.

The head position of the user watching the 360° video is represented by a head position probability
distribution that is critical for guiding the actions of BOLA360. In this section, we evaluate the perfor-
mance of BOLA360 using two different head position probability distributions. The first distribution
is homogeneous, where each tile is assigned a uniform probability, resulting in an equal likelihood of
the user watching any tile (pk,d = 1/D for all tiles). The second distribution is heterogeneous, with a
linear increase in probability from the minimum to the maximum. Specifically, we set the maximum
and minimum probabilities as 0.317 and 0.017 respectively. Additionally, we set the values of γ and V
to be γ = 0.1 and V = 1.66 for the experiments conducted in this section. In this section, our goal is to
understand the behavior of BOLA360 using these synthetic inputs, while we use realistic probabilities
derived from real-world scenarios in the next section,

5.2 Experimental Results

Figure 3 shows the maximum, minimum, and average bitrates of segments downloaded by BOLA360

for each chunk of the video. For the homogeneous distribution, the selected bitrate for all segments
of a chunk is the same. BOLA360 chooses its action by solving the maximization problem defined in
Equation (5). This action is taken based on the current buffer level. The results in Figure 3 show that
the average download bitrate grows with an increase in buffer level. We show the threshold values
for the buffer level where the action for the tile with the highest probability changes. In addition, we
show the variations of buffer level over time for both homogeneous and heterogeneous head position
probability distributions in Figure 3. When the buffer level is higher than V (vM · pk,d + γδ), BOLA360
downloads nothing for that tile and tries to select the bitrate after ∆ seconds. Note that increasing the
value of γ increases the importance of continuous playback without rebuffers. Increasing the value of
γ by ϵ is similar to reducing the buffer level by ϵδV , resulting in BOLA360 using correspondingly higher

8

Figure 4: Variation of average downloaded bitrates and playing bitrate over time under bitrate selection
of BOLA360 for the homogeneous (left most and second left), and heterogeneous (third left and right
most) head position probability distribution. BOLA360 responds to the variation of network bandwidth
by changing the selected bitrates.

threshold values for the buffer levels for bitrate switches. Therefore, increasing the value of γ shifts the
bitrate curves in Figure 3 to the right and vice versa. Lastly, Figure 4 shows the average bitrates of
segments downloaded across all tiles and the bitrate of the tiles that user actually sees (playing bitrate)
in their FOV. One can see that BOLA360 responds to the bandwidth change by increasing/decreasing
selected bitrates.

6 Comparison of BOLA360 with other approaches

We introduce several algorithms that capture baseline techniques as well the current state-of-the-
art known in the prior literature for solving ABR360. We provide an extensive comparison of the
QoE achieved by BOLA360 in comparison with these algorithms and show that BOLA360 significantly
advances the current state-of-the-art.

6.1 Comparison Algorithms

The first comparison algorithm, named DPon, utilizes the estimated bandwidth to determine the bitrates
of segments for the next chunk. However, DPon lacks foresight and does not consider future implications,
focusing solely on maximizing the immediate impact on the quality of experience (QoE). The second
comparison algorithm, Top-D, distributes the estimated bandwidth equally among all D tiles and
selects bitrates accordingly. Top-D is very similar to the algorithm used in some previous works like
[41, 28]. The third comparison algorithm, VA-360, is introduced in [27], which gives a unique weight
to each tile and distributes the estimated bandwidth among all tiles based on the given weights,
where the head movement probabilities serve as the weight of tiles. The fourth comparison algorithm,
360ProbDASH proposed in [28] selects the aggregate bitrate of tiles for each segment to keep the
buffer level close to the targeted buffer level. Then, it distributes the selected bitrate among all
tiles to maximize QoE and reduce the variance of tiles’ bitrates inside the FOV. The last comparison
algorithm, Salient-VR, proposed in [29]. Salient-VR, leverage the estimated bandwidth and buffer
level to determine the highest possible bitrates such that the download time of a chunk does not
exceed the length of the buffered video. Note that there are other state-of-the-art algorithms, such
as Flare [30], or Pano [31], which consider different metrics, like minimizing bitrate variations across
segments of a chunk. However, these algorithms may exhibit weaker performance when evaluated
using the QoE defined in this work. By adapting their concepts to align with the QoE defined in this
work, we can develop ABR360 algorithms that closely resemble 360ProbDASH, DPon, or Top-D.

9

Table 2: Available bitrates and utility values of them for experiments of Sections 6.3, and 6.4

bitrate (Mbps) 0.44 0.7 1.35 2.14 4.1 8.2 16.5

Sizes (Mb) 2.2 3.5 6.75 10.7 20.5 41.0 82.5

Utility values 0.000 0.464 1.121 1.582 2.232 2.925 3.624

6.2 Experimental Setup

To evaluate the performance of these algorithms, we conducted experiments in multiple different
scenarios to demonstrate the algorithms’ performance under different settings. We use a 250 seconds
video, split into chunks of 5 seconds and spatially distributed over 8 tiles. Also, the video is encoded in
seven different bitrates, i.e., M = 7. Similar to Section 5, we use the logarithmic utility function. The
list of available bitrates, size of segments, and utility values are listed in Table 2. The buffer capacity
is Qmax = 64. Finally, we select γ = 0.3, V = 10.9, and dynamic value selection for ∆ as suggested
in [17]. We use 4G bandwidth traces from [42] and 4G/LTE bandwidth trace dataset [43] collected
by IDLAB [44] to simulate the network condition. We select 14 different traces from 4G/LTE dataset
to evaluate the performance of BOLA360 under different network conditions. During our evaluation
process, the video is stored on an Apache server. Both server and client use Microsoft Windows as
a OS, 24GB of RAM, and 8-core, 3Ghz Intel Core-i7 CPU. We used Chrome DevTools API [45] to
transfer the video between server and client and also emulate the network condition. We fetched the
bandwidth capacity from the 4G/LTE dataset and injected them into the Chrome DevTools to limit
the download capacity between the server and the client. Unless anything else mentioned, to capture
the actual FOV of the user and head position probability values, we generate the navigation graph [34]
for 360° video using public VR head traces published by [46].

6.3 Performance Evaluation using Real Network and Head Movement Traces

In this experiment, we compare the performance of BOLA360 and other comparison algorithms using
real network and head movement traces. We use 4G bandwidth traces, network profile 15 in Ap-
pendix D for this section. We report playing bitrate, the rebuffering ratio (percentage of length of
video considered as a rebuffering), and QoE of BOLA360, DPon, Top-D, VA-360, and Salient-VR. Note
that, the average playing bitrate reported in Figure 5 is calculated over the segments the user has seen
inside FOV. We report the results of 100 different trials, where for each trial, we sample the user’s head
direction from the head position probability distribution and use the same network traces, video, and
algorithm parameters. The CDF plot of average bitrates, rebuffering ratio, and QoE values of 100
different trials is reported in Figure 5.

The results in Figure 5 show that BOLA360 substantially outperforms other comparison algorithms
in QoE as well as the bitrate of a tile user has seen. VA-360 selects relatively high bitrates for
all segments of a chunk while BOLA360 efficiently distributes the available bitrates among different
segments such that BOLA360 is able to achieve higher playing bitrate and also lower rebuffering ratio.
It is worth noting that the rebuffering of DPon is very low since it is designed to minimize the rebuffering
by taking actions with an expected download time of less than δ seconds regardless of buffer level.
However, its average bitrate is significantly lower than that of BOLA360.

Key takeaway. BOLA360 outperforms comparison algorithms in terms of QoE as it is designed
to maximize it. Besides, BOLA360 performs better than all comparison algorithms in terms of playing
bitrate and rebuffering ratio.

10

Figure 5: Average playing bitrate vs. rebuffering ratio (left most), the CDF of playing bitrate (second
left), rebuffering ratio (third left), and QoE (right most) of BOLA360 and comparison algorithms using
real network and head movement traces. The average playing bitrate of BOLA360 was 3.2Mbps, while
this value for VA-360, Salient-VR, and 360ProbDASH were 2.6Mbps, 2.6Mbps, and 2.1Mbps. However,
the average rebuffering for BOLA360, VA-360, Salient-VR, and 360ProbDASH were 0.26%, 2.1%, 0.25%
and 0.25%, respectively.

Figure 6: The average QoE (left) and average playing bitrate (right) over the bitrate selection of
BOLA360 and other comparison algorithms for 14 different network profiles and 100 trials. In terms
of QoE, BOLA360 outperforms others in all profiles. On average, BOLA360 achieves about 13.6% more
QoE than Salient-VR which was in the second place during these experiments.

6.4 Impact of Network Bandwidth on the Performance of Algorithms

The bandwidth capacity and variations significantly impact the performance of online algorithms for
ABR360. In this experiment, we investigate the impact of different network profiles on the performance
of BOLA360 and comparison algorithms.

We use 14 different network traces from 4G/LTE dataset [43] to generate the bandwidth through-
put, which are all shown in Appendix D. We use the same video and algorithm/problem parameters
(details in Section 6.2) for all algorithms to capture the impact of the network capacity on their per-
formance. The results are reported for 100 trials for each network profile. We report the average QoE,
playback delay, rebuffering ratio, and average playing bitrate of algorithms.

The results in Figure 6 report the average QoE, and average playing bitrate of BOLA360 and five
comparison algorithms over 100 trials for 14 network profiles. BOLA360 stands as the best algorithm
in all 14 experiments. In these experiments, VA-360 selects relatively higher bitrates compared to
other algorithms, while its high rebuffering, shown in Figure 7 is substantial such that it lowers the
QoE of this algorithm as compared to BOLA360. In addition the playback delay of BOLA360 and
comparison algorithms shown in Figure 7. We can see the playback delay of VA-360 was the lowest in
all experiments. That clearly shows the trade-off between having low rebuffering or low playback delay.
The results show that BOLA360 keeps the playback delay less than 7.8 seconds while its rebuffering
ratio was the lowest among comparing alogithms in 12 out of 14 experiments.

Key takeaway. Networks with high fluctuations (e.g., profile index 2 and 7) causes a high
rebuffering ratio and leads BOLA360 to select bitrates with more cautious. Results in lower playing
bitrates (compared to other network profiles).

11

Figure 7: The average rebuffering ratio (left) and average playback delay (right) over the bitrate
selection of BOLA360 and comparison algorithms for 14 different network profiles and 100 trials. VA-360
usually results in higher rebuffering compared to the other algorithms while its playback delay is very
short. The average playback delay for BOLA360 was 7.8 seconds.

Figure 8: The average QoE (left) and average playing bitrate (right) over the bitrate selection of
BOLA360 and comparison algorithms using 12 different head position probability distributions over
100 trials. On average, BOLA360 achieves about 30.3% more QoE than Salient-VR which was the
second best algorithm in 11 out of 14 experiments.

6.5 Impact of Head Position Probabilities on the Performance of Algorithms

The head position probability values directly impact the QoE characterized in Equations (1) and (2);
hence, the performance of algorithms varies depending on these probabilities. To observe the impact of
head position probability distribution on the performance of ABR algorithms, we define 12 probability
distributions(details in Appendix C). We evaluate the BOLA360 and comparison algorithms against
these 12 probability distributions while the rest of the setting is similar to the experiment in Section
6.3. Specifically, for each chunk k, we replace the set of probabilities with the probabilities calculated
from Equation (14) in Appendix C. Note that each head position probability distribution could be
interpreted as a different video file. We report the average QoE, playback delay, rebuffering ratio,
and average playing bitrate of 100 trials of BOLA360 and comparison algorithms using each head
position probability distribution profile in Figures 8 (average QoE and playing bitrate), and 9 (average
rebuffering ratio and playback delay). Figure 8 shows that BOLA360 achieves relatively higher QoE
when the prediction of FOV is concentrated on fewer number of tiles. Since the Top-D downloads the
fixed bitrate for all tiles, the expected QoE of Top-D is independent of the head position probability
distribution. A notable observation from playing bitrate depicted in Figure 8 demonstrates that
BOLA360 kept the average playing bitrate at a high value for every probability profile, while the
achieved QoE is promising, and kept rebuffering ratio close to the lowest among all algorithms.

Key takeway. The playing bitrate of BOLA360 and most comparison algorithms improves when
the head position prediction is concentrated on fewer number of tiles. Meanwhile, BOLA360 could
improve the playing bitrate more than other comparison algorithms.

6.6 Discussion on the Performance of Predictions-based Algorithms

This section provides details on why the baseline or state-of-the-art algorithm used in Section 6.2
may fail to perform well in particular scenarios, and they cannot guarantee their performance in
the worst-case scenario. All of Top-D, DPon, VA-360, 360ProbDASH, and Salient-VR algorithms take

12

Figure 9: The average rebuffering ratio (left) and average playback delay (right) over the bitrate selec-
tion of BOLA360 and comparison algorithms using 12 different head position probability distributions
over 100 trials. VA-360 usually results in high rebuffering ratio and short playback delay; meanwhile,
the rebuffering ratio of BOLA360 was the lowest in 8 out of 12 experiments. The average playback
delay for BOLA360 was 6.7 seconds.

action based on the prediction of bandwidth that is given to them. The accuracy of this prediction
significantly impacts the performance of these algorithms such that a prediction with an error may
result in a significant difference between the performance of the ABR algorithm and the performance
of the optimal offline solution. In addition, these algorithms behave similarly to the ABR360 with
different values of γ. For example, for tiny values of γ, the bitrate level of the segments are much
more important to the user than the smoothness of streaming. However, Top-D, DPon algorithms take
similar actions as they take in the case of a large value of γ.

7 BOLA360 Enhancements

BOLA360 is meticulously designed to excel under all conceivable network conditions, including the most
challenging worst-case-like scenarios. The aim to achieve a satisfactory performance across all input,
however, makes BOLA360 often operate conservatively, refraining from switching to higher bitrates in
many real-world situations where worst-case conditions fail to materialize.

In this section, we propose BOLA360-REP and BOLA360-PL, two heuristic algorithms to improve
the practical performance of BOLA360 could be improved from two perspectives. First, we introduce
BOLA360-PL to address the common drawback of buffer-based ABR algorithms in fetching low-quality
bitrates during start or seek time or high oscillations time intervals. Secondly, we propose BOLA360-REP
to add the segment upgrade into the BOLA360. The basic BOLA360 algorithm is not designed to replace
previously downloaded segments with higher bitrates, further restricting its adaptability. Conse-
quently, if the network condition momentarily deteriorates and subsequently improves, the algorithm
toggles between lower and higher bitrates. While a high buffer level grants ABR algorithm an oppor-
tunity to replace low bitrate segments downloaded earlier, the fundamental design of BOLA360 fails to
support this crucial action. A detailed explanation of both heuristics is given below.

BOLA360-PL is a generalized version of BOLA-PL introduced in [32]. It aims to reduce the reaction
time of the BOLA360 during start and seek times. The reaction time is the duration from when the first
segment is fetched (during start time) or the first seek segment is fetched (during seek time) until the
selected bitrate of tiles by BOLA360 stabilizes. The main concept behind BOLA360-PL is to virtually
increase the buffer level at the start or seek time. This is achieved by estimating the bandwidth and
multiplying it by 50% to establish a safe expected bandwidth. To prevent rebuffering, BOLA360-PL
limits the bitrate of each segment based on the estimated bandwidth throughput. More specifically,
it restricts the size of the entire chunk to Slim = Q(t)wp(t)/2D, where wp(t) denotes the expected
bandwidth capacity at time t. BOLA360-PL virtually inserts a proportional number of segments into
the buffer such that the size of the new downloading chunk does not exceed Slim.

The second heuristic is BOLA360-REP, which is a variant of BOLA360 that allows for upgrading of
previously downloaded segments. One limitation of BOLA360 is its inability to modify previously

13

downloaded segments. Specifically, BOLA360 must make decisions about the next chunk, and it
is not designed to replace higher bitrate segments with previously downloaded, lower-quality ones.
BOLA360-REP determines whether it is better to download a new segment for the next chunk or to
improve the quality of previously downloaded segments based on the length of video available in the
buffer. If the decision is to download segments for the next chunk, BOLA360-REP selects the bitrates
according to the decision of BOLA360. If the decision is to replace the previously downloaded segments,
BOLA360-REP identifies a tile where there is at least a two-level difference between the bitrate of down-
loaded segment for that tile and the bitrate that BOLA360 would select for that tile at the current
time. BOLA360-REP then downloads and replaces the new segments for those low-quality segments.

7.1 Experimental Setup

We choose the parameters used in Section 6.5 and the head position probability profile 2 defined
in that section to evaluate the performance of heuristic extensions BOLA360-PL and BOLA360-REP.
We evaluate the performance of these algorithms against two scenarios: 1) accurate head position
probability prediction; and 2) noisy prediction for future chunks. In the first scenario, the head
position probabilities provided to the ABR algorithms are identical to the user’s actual head position
distribution. This means that the algorithm knows the user’s head position distribution, even for
tiles of chunks that will be played far in the future. In contrast, the second scenario assumes that
there will be a 10% error added to the prediction of head position probabilities for every δ seconds
difference between the chunk the user is watching and the chunk the ABR is seeking to obtain head
position probabilities for. Note that if the error is greater than 100%, the prediction of head position is
considered unavailable, and the head position probabilities passed to the ABR algorithms are uniform
distributions, where pk,d = 1/D.

7.2 Experimental Results

Figure 10 shows the CDF plots of the average segments’ bitrate (left), the reaction time (middle), and
oscillation (right, the average difference between the bitrate of two consecutive segments) of 100 trials
for accurate head position probability predictions. The results show that BOLA360-PL significantly
reduces the oscillation and reaction time of BOLA360. Since the BOLA360-PL improves the bitrate of
segments during start and seek time, and these segments are a low fraction of the entire video, the
average bitrate of tiles that BOLA360-PL prepared for the user is slightly better than the average bitrate
of tiles BOLA360 downloads.

In Figure 11, we report the result of the evaluation of BOLA360 and heuristic versions against
the noisy prediction of head positions. Specifically, we report the CDF plot of the average segments’
bitrate, reaction time, and the oscillation of BOLA360, BOLA360-PL, and BOLA360-REP. The results
show that the average bitrate of BOLA360 and BOLA360-PL reduced compared to the case where
accurate head position probabilities were available. On the other hand, BOLA360-REP improves the
average bitrate of BOLA360 up to near 97.6%. In addition, BOLA360-REP reduces the reaction time of
BOLA360 by 80.0%. Although BOLA360-REP could improve the average bitrate and the reaction time,
it increases the oscillation. The average oscillation time for BOLA360 was 1.6 seconds, while this value
for BOLA360-REP was 4.5 seconds. Meanwhile, all two heuristic versions could keep the rebuffering as
low as the rebuffering of BOLA360.

Key takeaway. Each extension of BOLA360 improves the performance in certain aspects, such as
bitrate or reaction time. However, each version has drawbacks that may result in lower performance
in other aspects. Therefore, no version outperforms the others in all aspects, and depending on the
application and user requirements, different versions may be suitable.

14

Figure 10: The CDF of the average bitrate of any downloaded tile (left), reaction time (middle), and
oscillation (right) of basic BOLA360 and BOLA360-PL using real network and head movement traces.
BOLA360-PL reduces the oscillation and reaction time by 70.9% and 67.8% respectively.

Figure 11: The CDF of average bitrate of downloaded segments (left), reaction time (middle), and
oscillation (right) of basic BOLA360, BOLA360-PL, and BOLA360-REP using real network and head move-
ment traces while the prediction of the head position dynamically got updated. BOLA360-REP improves
the average bitrate of downloaded tiles up to 91.2% compared to BOLA360 BASIC, and reduces the
reaction time by 80.0%.

8 Related Work

The prior literature extensively addresses the problem of bitrate and view adaptation in 360° video
streaming. Previous works commonly employ various machine learning techniques to predict user
head movements and incorporate them into existing ABR algorithms. For example, [30] proposes
a prediction-based approach and designs an ABR algorithm using historical data from 360° video
streaming sessions. The focus of their work is on head movement prediction, while the ABR algorithm
itself is a heuristic approach lacking rigorous optimization-based mechanisms.

Authors in [47] propose a Lyapunov-based model that uses Lyapunov optimization to solve ABR360
problem. In their work, the quality of the tiles is selected based on the motion maps. In addition,
they add saliency map information to their model to make a balance between QoE and playback
delay. In another work, [48] proposes a different approach by constructing a two-layered hierarchical
buffer-based algorithm with short and long buffer layers. The prediction of FOV is used to update the
tiles inside the short buffer layer (short-term improvement). The long buffer layer tries to download
the new segments that are not available in the short buffer layer and will be played later. In another
work, [41] predicts the head movement by using a saliency map, tile probability heat map, and LSTM
models and gives ABR360 algorithm based on that.

In another category of work [49, 50, 51, 52, 18], several deep RL-based algorithms are developed
for solving bitrate selection problems. They also use a dataset of the user’s head position to train the
model and find the optimal bitrate selection according to the predicted FOV.

In [53], FOV prediction is used to select proper bitrates for tiles in a predicted FOV, with the accuracy
of prediction impacting the final bitrate selection. Other works such as [54, 29, 38, 55, 28] also focus
on FOV prediction. The main idea is that users have similar region-of-interest when watching the same

15

video. They divide the users into clusters such that users inside each cluster have similar region-of-
interest in most videos. Then they give FOV prediction based on the cluster of a given user and the
historical head direction traces of users in a predicted cluster. While these approaches help reduce
bandwidth waste, they still require an ABR algorithm to select bitrates within the predicted region.
In contrast, BOLA360 is an online algorithm with rigorous performance guarantees, solving the ABR360
problem optimally. Guan et al. [31] employ Model Predictive Control (MPC) to select the aggregate
bitrate for a segment, allocating it among tiles to maintain quality within the limited bitrate. In
another category of research [56, 57], an optimized coding/encoding algorithm minimizes bandwidth
usage for 360° videos, evaluated using real 4K and 8K videos from YouTube. Their experiments use a
straightforward ABR algorithm resembling DPon (Section 6).

9 Conclusion and Future Directions

In this paper, we formulated an optimization problem to maximize users’ quality of experience in
360° video streaming applications. Then, we proposed BOLA360, an online algorithm that achieves a
provably near-optimal solution by selecting a proper bitrate for each tile of a 360° video that maximizes
the quality while ensuring the rebuffering rate is minimal. Our comprehensive experimental results
showed that BOLA360 performs better than several other alternative algorithms under a wide range of
network and head movement profiles. In future work, we plan to develop a data-driven and robust
version of BOLA360 to explicitly use the future predictions in the decision-making while persevering
the theoretical performance guarantees of the algorithm.

Acknowledgments

This research was supported in part by NSF grants CAREER 2045641, CPS-2136199, CNS-2106299,
CNS-2102963, CSR-1763617, CNS-2106463, and CNS-1901137. We acknowledge their financial assis-
tance in making this project possible.

References

[1] Youtube. youtube360. https://www.youtube.com/360, 2022. Accessed: 2022-03-01.

[2] Sony. Sony playstaion vr. https://www.playstation.com/en-us/ps-vr2/, 2022. Accessed:
2022-03-01.

[3] Microsoft. Microsoft vr headset. https://www.microsoft.com/en-us/store/b/

virtualreality, 2022. Accessed: 2022-03-01.

[4] Google LLC. Google ar/vr. https://arvr.google.com/ar/, 2022. Accessed: 2022-03-01.

[5] CISCO. Cisco mobile visual networking index (vni) forecast projects 7-fold increase in global
mobile data traffic from 2016-2021. https://tinyurl.com/CICSO-netwok, 2017. Accessed: 2022-
08-01.

[6] Michael Zink, Ramesh Sitaraman, and Klara Nahrstedt. Scalable 360° video stream delivery:
Challenges, solutions, and opportunities. Proceedings of the IEEE, 107(4):639–650, 2019.

[7] Thanh Cong Nguyen and Ji-Hoon Yun. Predictive tile selection for 360-degree vr video streaming
in bandwidth-limited networks. IEEE Communications Letters, 22(9):1858–1861, 2018.

16

https://www.youtube.com/360
https://www.playstation.com/en-us/ps-vr2/
https://www.microsoft.com/en-us/store/b/virtualreality
https://www.microsoft.com/en-us/store/b/virtualreality
https://arvr.google.com/ar/
https://tinyurl.com/CICSO-netwok

[8] Simone Mangiante, Guenter Klas, Amit Navon, Zhuang GuanHua, Ju Ran, and Marco Dias Silva.
Vr is on the edge: How to deliver 360 videos in mobile networks. In Proceedings of the Workshop
on Virtual Reality and Augmented Reality Network, pages 30–35, 2017.

[9] Mallesham Dasari, Arani Bhattacharya, Santiago Vargas, Pranjal Sahu, Aruna Balasubramanian,
and Samir R Das. Streaming 360-degree videos using super-resolution. In IEEE INFOCOM 2020-
IEEE Conference on Computer Communications, pages 1977–1986. IEEE, 2020.

[10] Akamai. Akamai’s [state of the internet]. https://www.akamai.com/site/en/documents/

state-of-the-internet/q1-2017-state-of-the-internet-connectivity-infographic.

pdf, 2017. Accessed: 2022-07-18.

[11] EtiSoftware. Internet speed and subscriber dissatisfaction. https://tinyurl.com/

network-speed, 2021. Accessed: 2022-07-18.

[12] Jonathan Kua, Grenville Armitage, and Philip Branch. A survey of rate adaptation techniques for
dynamic adaptive streaming over http. IEEE Communications Surveys & Tutorials, 19(3):1842–
1866, 2017.

[13] Bo Han, Yu Liu, and Feng Qian. Vivo: Visibility-aware mobile volumetric video streaming. In
Proceedings of the 26th annual international conference on mobile computing and networking,
pages 1–13, 2020.

[14] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive video streaming with
pensieve. In Proceedings of the conference of the ACM special interest group on data communi-
cation, pages 197–210, 2017.

[15] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A control-theoretic approach for
dynamic adaptive video streaming over http. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, pages 325–338, 2015.

[16] Xu Zhang, Yiyang Ou, Siddhartha Sen, and Junchen Jiang. Sensei: Aligning video streaming
quality with dynamic user sensitivity. In NSDI, pages 303–320, 2021.

[17] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. Bola: Near-optimal bitrate adapta-
tion for online videos. IEEE/ACM Transactions on Networking, 28(4):1698–1711, 2020.

[18] Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol Ye, and Dongsu Han. Neural-enhanced live
streaming: Improving live video ingest via online learning. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication, pages 107–125, 2020.

[19] Chenge Li, Weixi Zhang, Yong Liu, and Yao Wang. Very long term field of view prediction for
360-degree video streaming. In 2019 IEEE Conference on Multimedia Information Processing and
Retrieval (MIPR), pages 297–302. IEEE, 2019.

[20] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang, Kuan-Ta Chen, and Cheng-Hsin
Hsu. Fixation prediction for 360 video streaming in head-mounted virtual reality. In Proceedings
of the 27th Workshop on Network and Operating Systems Support for Digital Audio and Video,
pages 67–72, 2017.

[21] Yanyu Xu, Yanbing Dong, Junru Wu, Zhengzhong Sun, Zhiru Shi, Jingyi Yu, and Shenghua Gao.
Gaze prediction in dynamic 360 immersive videos. In proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5333–5342, 2018.

17

https://www.akamai.com/site/en/documents/state-of-the-internet/q1-2017-state-of-the-internet-connectivity-infographic.pdf
https://www.akamai.com/site/en/documents/state-of-the-internet/q1-2017-state-of-the-internet-connectivity-infographic.pdf
https://www.akamai.com/site/en/documents/state-of-the-internet/q1-2017-state-of-the-internet-connectivity-infographic.pdf
https://tinyurl.com/network-speed
https://tinyurl.com/network-speed

[22] Mai Xu, Yuhang Song, Jianyi Wang, MingLang Qiao, Liangyu Huo, and Zulin Wang. Predicting
head movement in panoramic video: A deep reinforcement learning approach. IEEE transactions
on pattern analysis and machine intelligence, 41(11):2693–2708, 2018.

[23] Yixuan Ban, Lan Xie, Zhimin Xu, Xinggong Zhang, Zongming Guo, and Yue Wang. Cub360:
Exploiting cross-users behaviors for viewport prediction in 360 video adaptive streaming. In 2018
IEEE International Conference on Multimedia and Expo (ICME), pages 1–6. IEEE, 2018.

[24] Zhimin Xu, Yixuan Ban, Kai Zhang, Lan Xie, Xinggong Zhang, Zongming Guo, Shengbin Meng,
and Yue Wang. Tile-based qoe-driven http/2 streaming system for 360 video. In 2018 IEEE
International Conference on Multimedia & Expo Workshops (ICMEW), pages 1–4. IEEE, 2018.

[25] Xianglong Feng, Yao Liu, and Sheng Wei. Livedeep: Online viewport prediction for live virtual
reality streaming using lifelong deep learning. In 2020 IEEE Conference on Virtual Reality and
3D User Interfaces (VR), pages 800–808. IEEE, 2020.

[26] Xianglong Feng, Weitian Li, and Sheng Wei. Liveroi: region of interest analysis for viewport
prediction in live mobile virtual reality streaming. In Proceedings of the 12th ACM Multimedia
Systems Conference, pages 132–145, 2021.

[27] Cagri Ozcinar, Ana De Abreu, and Aljosa Smolic. Viewport-aware adaptive 360 video streaming
using tiles for virtual reality. In 2017 IEEE International Conference on Image Processing (ICIP),
pages 2174–2178. IEEE, 2017.

[28] Lan Xie, Zhimin Xu, Yixuan Ban, Xinggong Zhang, and Zongming Guo. 360probdash: Improving
qoe of 360 video streaming using tile-based http adaptive streaming. In Proceedings of the 25th
ACM international conference on Multimedia, pages 315–323, 2017.

[29] Shibo Wang, Shusen Yang, Hailiang Li, Xiaodan Zhang, Chen Zhou, Chenren Xu, Feng Qian,
Nanbin Wang, and Zongben Xu. Salientvr: saliency-driven mobile 360-degree video streaming
with gaze information. In Proceedings of the 28th Annual International Conference on Mobile
Computing And Networking, pages 542–555, 2022.

[30] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. Flare: Practical viewport-
adaptive 360-degree video streaming for mobile devices. In Proceedings of the 24th Annual Inter-
national Conference on Mobile Computing and Networking, pages 99–114, 2018.

[31] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming Guo, and Junchen Jiang. Pano: Opti-
mizing 360 video streaming with a better understanding of quality perception. In Proceedings of
the ACM Special Interest Group on Data Communication, pages 394–407. 2019.

[32] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. From theory to practice: Improving
bitrate adaptation in the dash reference player. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), 15(2s):1–29, 2019.

[33] Joshua Ratcliff, Alexey Supikov, Santiago Alfaro, and Ronald Azuma. Thinvr: Heterogeneous
microlens arrays for compact, 180 degree fov vr near-eye displays. IEEE transactions on visual-
ization and computer graphics, 26(5):1981–1990, 2020.

[34] Jounsup Park and Klara Nahrstedt. Navigation graph for tiled media streaming. In Proceedings
of the 27th ACM International Conference on Multimedia, pages 447–455, 2019.

[35] Yanan Bao, Huasen Wu, Tianxiao Zhang, Albara Ah Ramli, and Xin Liu. Shooting a moving
target: Motion-prediction-based transmission for 360-degree videos. In 2016 IEEE International
Conference on Big Data (Big Data), pages 1161–1170. IEEE, 2016.

18

[36] Jinyu Chen, Xianzhuo Luo, Miao Hu, Di Wu, and Yipeng Zhou. Sparkle: User-aware viewport
prediction in 360-degree video streaming. IEEE Transactions on Multimedia, 23:3853–3866, 2020.

[37] Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. Optimizing 360 video delivery
over cellular networks. In Proceedings of the 5th Workshop on All Things Cellular: Operations,
Applications and Challenges, pages 1–6, 2016.

[38] Lan Xie, Xinggong Zhang, and Zongming Guo. Cls: A cross-user learning based system for im-
proving qoe in 360-degree video adaptive streaming. In Proceedings of the 26th ACM international
conference on Multimedia, pages 564–572, 2018.

[39] Peter Reichl, Bruno Tuffin, and Raimund Schatz. Logarithmic laws in service quality percep-
tion: where microeconomics meets psychophysics and quality of experience. Telecommunication
Systems, 52(2):587–600, 2013.

[40] Han Hu, Cheng Zhan, Jianping An, and Yonggang Wen. Optimization for http adaptive video
streaming in uav-enabled relaying system. In ICC 2019-2019 IEEE International Conference on
Communications (ICC), pages 1–6. IEEE, 2019.

[41] Sohee Park, Arani Bhattacharya, Zhibo Yang, Mallesham Dasari, Samir R Das, and Dimitris
Samaras. Advancing user quality of experience in 360-degree video streaming. In 2019 IFIP
Networking Conference (IFIP Networking), pages 1–9. IEEE, 2019.

[42] A Bokani, M Hassan, SS Kanhere, J Yao, and G Zhong. Com-prehensive mobile bandwidth
traces from vehicular networks. In Proceedings of the 7th International Conference on Multimedia
Systems. Association for Computing Machinery, 2016.

[43] Ghent University. 4g/lte bandwidth logs. https://users.ugent.be/~jvdrhoof/dataset-4g/,
2019. Accessed: 2022-06-20.

[44] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen, and
F. De Turck. HTTP/2-Based Adaptive Streaming of HEVC Video Over 4G/LTE Networks.
IEEE Communications Letters, 20(11):2177–2180, 2016.

[45] Google LLC. Google-chrome: Chrome devtools protocol. https://chromedevtools.github.

io/devtools-protocol/tot/Network/, 2023. Accessed: 2023-01-21.

[46] Chenglei Wu, Zhihao Tan, Zhi Wang, and Shiqiang Yang. A dataset for exploring user behaviors in
vr spherical video streaming. In Proceedings of the 8th ACM on Multimedia Systems Conference,
pages 193–198, 2017.

[47] Wang Shen, Lianghui Ding, Guangtao Zhai, Ying Cui, and Zhiyong Gao. A qoe-oriented saliency-
aware approach for 360-degree video transmission. In 2019 IEEE Visual Communications and
Image Processing (VCIP), pages 1–4. IEEE, 2019.

[48] Zhiqian Jiang, Xu Zhang, Wei Huang, Hao Chen, Yiling Xu, Jenq-Neng Hwang, Zhan Ma, and
Jun Sun. A hierarchical buffer management approach to rate adaptation for 360-degree video
streaming. IEEE Transactions on Vehicular Technology, 69(2):2157–2170, 2019.

[49] Yuanxing Zhang, Pengyu Zhao, Kaigui Bian, Yunxin Liu, Lingyang Song, and Xiaoming Li.
Drl360: 360-degree video streaming with deep reinforcement learning. In IEEE INFOCOM 2019-
IEEE Conference on Computer Communications, pages 1252–1260. IEEE, 2019.

19

https://users.ugent.be/~jvdrhoof/dataset-4g/
https://chromedevtools.github.io/devtools-protocol/tot/Network/
https://chromedevtools.github.io/devtools-protocol/tot/Network/

[50] Sohee Park, Minh Hoai, Arani Bhattacharya, and Samir R Das. Adaptive streaming of 360-
degree videos with reinforcement learning. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 1839–1848, 2021.

[51] Jun Fu, Chen Hou, and Zhibo Chen. 360hrl: Hierarchical reinforcement learning based rate
adaptation for 360-degree video streaming. In 2021 International Conference on Visual Commu-
nications and Image Processing (VCIP), pages 1–5. IEEE, 2021.

[52] Nuowen Kan, Junni Zou, Chenglin Li, Wenrui Dai, and Hongkai Xiong. Rapt360: Reinforcement
learning-based rate adaptation for 360-degree video streaming with adaptive prediction and tiling.
IEEE Transactions on Circuits and Systems for Video Technology, 32(3):1607–1623, 2021.

[53] Hui Yuan, Shiyun Zhao, Junhui Hou, Xuekai Wei, and Sam Kwong. Spatial and temporal
consistency-aware dynamic adaptive streaming for 360-degree videos. IEEE Journal of Selected
Topics in Signal Processing, 14(1):177–193, 2019.

[54] Anh Nguyen, Zhisheng Yan, and Klara Nahrstedt. Your attention is unique: Detecting 360-degree
video saliency in head-mounted display for head movement prediction. In Proceedings of the 26th
ACM international conference on Multimedia, pages 1190–1198, 2018.

[55] Stefano Petrangeli, Viswanathan Swaminathan, Mohammad Hosseini, and Filip De Turck. An
http/2-based adaptive streaming framework for 360 virtual reality videos. In Proceedings of the
25th ACM international conference on Multimedia, pages 306–314, 2017.

[56] Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng Li, and Lei Han. Rubiks: Practical 360-
degree streaming for smartphones. In Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services, pages 482–494, 2018.

[57] Michael Rudow, Francis Y Yan, Abhishek Kumar, Ganesh Ananthanarayanan, Martin Ellis, and
KV Rashmi. Tambur: Efficient loss recovery for videoconferencing via streaming codes. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), pages 953–
971, 2023.

[58] Michael J Neely. Stochastic network optimization with application to communication and queue-
ing systems. Synthesis Lectures on Communication Networks, 3(1):1–211, 2010.

[59] Michael J Neely. Dynamic optimization and learning for renewal systems. IEEE Transactions on
Automatic Control, 58(1):32–46, 2012.

20

A More Detail on the Performance of BOLA360

Remark 3. Theorem 1 gives an upper bound for the buffer level used by BOLA360 as a function of
problem parameters and algorithm parameter V . The buffer usage of BOLA360 grows linearly with the
growth of V . Buffer level usage is an upper bound for the playback delay of the video. Based on this
theorem, one can target lower playback delay decreasing the value of V .

We prove this theorem by induction. The base case is Q(t1) = 0 ≤ V (vM + γδ) +D that satisfies
the statement of the theorem. Two cases are possible for value of Q(tk):

• Case 1 : Q(tk) ≤ V (vM + γδ): in this case, the buffer level at time tk+1 does not exceeds
Q(tk) +D ≤ V (vM + γδ) +D.

• Case 2 : V (vM + γδ) < Q(tk) < V (vM + γδ) + D: In this case, the action at time tk is to
download nothing for any tiles. Hence Q(tk+1) ≤ Q(tk).

Now, we proceed to analyze the QoE performance of BOLA360. With large K, the ABR360 problem
with rate stability constraint [58] is equivalent to the relaxed version of ABR360 with limited buffer
capacity, i.e.,

Q(t) ≤ Qmax ⇒ lim
K→∞

1

K
E
{ K∑

k=1

D∑
d=1

M∑
m=1

ak,d,mδ

}
≤ lim

K→∞

1

K
E
{ K∑

k=1

nkTk

}
,

Any solution to ABR360 with limited buffer capacity requires that the expected input rate into the
buffer be less than or equal to the buffer’s output rate. Otherwise, for the case of K → ∞, the limited
buffer capacity constraint does not hold. It is good to mention that any solution to ABR360 with
limited buffer capacity satisfies the rate stability constraint; however, the opposite statement is not
necessarily true.

The stationary algorithm : In the context of ABR360 problem, we define stationary algorithm
as an ABR algorithm that downloads a fixed set of bitrates for all segments. This algorithm uses a
fixed set of bitrates, A∗, with size D (|A∗| = D), and for each chunk K, it selects the bitrates such
that the set of selected bitrates for all D tiles are the same as the A∗. Note that the selected bitrate
for each tile may vary over time depending on the head position probability values, while the set of
bitrates selected for all tiles of the chunk remains fixed.

Offline ABR360 problem fits in the notation of optimization for renewal frames [59]. Precisely, by
fixing renewal frame duration and letting the achieved QoE of downloading each tile represent penalty
values in the notation of [59], the offline ABR360 problem can convert into an optimization problem
over renewal frames. Then, following Lemma 1 in [59], we prove the existence of a stationary algorithm
with QoE of U∗

K + γR∗
K .

Lemma 3. For the ABR360 problem with a large video, i.e., K → ∞, there exists a stationary algorithm
that satisfies the rate stability constraint and achieves the expected QoE of U∗

K + γR∗
K .

Proof. The proof of this lemma follows from Lemma 1 in [59] and continues with the approach taken
for proof of Lemma 1 in [17]. Based on the definition of a stationary algorithm for the ABR360 problem,
the expected QoE of the stationary algorithm is the same as expected, achieving QoE on each slot,
which satisfies the criteria of Lemma 1 in [59].

21

B Proof of Theorem 2

Lets define the Lyapunov function L(Q(tk)), and per-slot conditional Lyapunov drift Φ(tk) as below

L(Q(tk)) =
1

2
Q2(tk),

Φ(tk) = E{∆ L(Q(tk)) | Q(tk)} = E{L(Q(tk+1))− L(Q(tk))|Q(tk)}.

Depending on the buffer level, the value of Φ(tk) can get derived using buffer level evolution
described in Equation (4). Consider two cases: 1) Q(tk) ≤ nkTk/δ and, 2) Q(tk) > nkTk/δ. In the
first case, the value of Φ(tk) would be

Φ1(tk) = E{1
2

(D∑
d=1

M∑
m=1

ak,d,m
)2 − 1

2
Q2(tk)|Q(tk)},

and in the second case the value of Φ(tk) would be

Φ2(tk) = E
{1
2

(D∑
d=1

M∑
m=1

ak,d,m − nkTk

δ

)2 −Q(tk)
(nkTk

δ
−

D∑
d=1

M∑
m=1

ak,d,m
)}

|Q(tk)

}
.

Therefore, there would be an upper bound for the value Φ(tk) of as below

Φ(tk) ≤ max{Φ1(tk),Φ2(tk)}

≤ E
{
n2
kT

2
k + δ2(

∑D
d=1

∑M
m=1 ak,d,m)2

2δ2
|Q(tk)

}
−Q(tk)E

{
nkTk

δ
−

D∑
d=1

M∑
m=1

ak,d,m}|Q(tk)

}

≤ Dδ2 +Ψ

2δ2
−Q(tk)E

{
nkTk

δ
−

D∑
d=1

M∑
m=1

ak,d,m}|Q(tk)

}
.

Now, by subtracting V E
{∑D

d=1

∑M
m=1 ak,d,m(pk,dvm + γδ)|Q(tk)

}
from both side, we have

Φ(tk)− V E
{ D∑

d=1

M∑
m=1

ak,d,m(pk,dvm + γδ)|Q(tk)

}

≤ Dδ2 +Ψ

2δ2
−Q(tk)E

{
nkTk

δ
−

D∑
d=1

M∑
m=1

ak,d,m|Q(tk)

}
− V E

{ D∑
d=1

M∑
m=1

ak,d,m(pk,dvm + γδ)|Q(tk)

}
.

Let wavg denotes the average bandwidth capacity during downloading chunk k. Then the condi-

tional expected download time for chunk k, E{Tk|Q(tk)} = E{ 1
wavg

∑D
d=1

∑M
m=1 ak,d,mSm|Q(tk)}, can

get minimized without requiring any knowledge of wavg as follows.

Φ(tk)− V E
{ D∑

d=1

M∑
m=1

ak,d,m(pk,dvm + γδ)|Q(tk)

}

≤ Dδ2 +Ψ

2δ2
−Q(tk)E

{
nkTk

δ
−

D∑
d=1

M∑
m=1

ak,d,m|Q(tk)

}
− V (U∗

K + γR∗
K)E{Tk|Q(tk)}.

22

The above equation holds since the decision of BOLA360 at time tk is a solution of maximization
equation detailed in Equation (5) Then, we have

Φ(tk)− V E
{ D∑

d=1

M∑
m=1

ak,d,m(pk,dvm + γδ)|Q(tk)

}

≤ Dδ2 +Ψ

2δ2
−Q(tk)

(
E{nk}

δ
−

E{
∑D

d=1

∑M
m=1 a

∗
k,d,m}

E{T ∗
k }

)
E{Tk} − V (U∗

K + γR∗
K)E{Tk},

where a∗k,d,m is the action of stationary algorithm for tile d and bitrate index m of chunk k which
satisfies the rate stability constraint (8). T ∗

k shows the length of download time for chunk k while
the stationary algorithm is taking action. Based on rate stability constraint (8), the second term in
equation above is always negative, so

Φ(tk)− V E
{ D∑

d=1

M∑
m=1

ak,d,m(pk,dvm + γδ)|Q(tk)

}
≤ Dδ2 +Ψ

2δ2
− V (U∗

K + γR∗
K)E{Tk}.

By taking the sum over k ∈ {1, 2, ...,K} we have

K∑
k=1

Φ(tk)−
K∑
k=1

V E
{ D∑

d=1

M∑
m=1

ak,d,m(pk,dvm + γδ)|Q(tk)

}
≤ Dδ2 +Ψ

2δ2
K − V (U∗

K + γR∗
K)E{Tk}K.

By dividing all terms by V ×K × E{Tk}, we get

E{L(Q(tK))}
V KE{Tk}

− OBJ ≤ Dδ2 +Ψ

2V δ2
· 1

E{Tk}
− (U∗

K + γR∗
K).

Last, by taking the limit K → +∞ we get

(U∗
K + γR∗

K)− Dδ2 +Ψ

2V δ2
σ ≤ OBJ.

C Generating Probability Distributions for Head Position Proba-
bility Values Used in Section 6.4

To investigate the impact of head position probability values on the performance of different algorithms,
we use synthetic probabilities to simulate different real-world scenarios. Toward this, we generate
the head position probability distributions based on three parameters Dpos(k), rmin(k), and αp(k).
Parameter Dpos(k) is the number of tiles with positive probability inside the head position probability
values for chunk k, i.e., Dpos(k) = |{pk,d|pk,d > 0}|; rmin(k) represents the ratio between the minimum
and maximum probabilities among probabilities of tiles for chunk k. Last, parameter αp(k) determines
the heterogeneity of the head position probability values for chunk k. We introduce several additional

auxiliary notations to concretely define αp(k). Let p
(L)
i (k) be the probability of ith highest probable

tile if there is a fixed step, ∆p, between the probability of each tile and the probability of the next tile
in sorted order of probabilities. We define the probability of ith highest probable tile as a function of
αp(k) as follows.

pi(k) =
1− αp(k)

Dpos(k)
+ αp(k)p

(L)
i (k). (14)

The higher values of αp(k), the higher the accuracy of the prediction of FOV. Note that we have
0 < Dpos(k) ≤ D, rmin(k) ≤ 1 and 0 < αp(k) ≤ 1. With the above definition in Equation (14), αp(k)

23

Table 3: The details of the probability distributions used in the experiment of Section 6.5

Probability profile index 1 2 3 4 5 6 7 8 9 10 11 12

Dpos(k) 8 8 8 8 8 4 4 4 4 4 2 2

αp(k) 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.5

determines the range of probabilities. In particular, αp(k) = 0 means the probability of all tiles are
the same, i.e., pi(k) = 1/Dpos(k). On the other hand, αp(k) = 1 spans a wide range of probabilities
between the minimum and the maximum., representing heterogeneous values for the head position
probability values. A justification for this model as a representative of real-world head direction
prediction is that (D − Dpos) shows the number of tiles the FOV prediction model is confident that
they will be out of FOV. On the other hand, αp(k) shows how concentrated the FOV prediction model
is. We use rmin(k) = 0.05 for all distributions. Also, the details of the 12 probability distributions
used in Section 6.4 is listed in Table 3.

D Network Profiles Used In Section 6 and 6.4

The network profiles used in Section 6 and 6.4 are plotted in Figure 12. The network profile index 15
shows 4G bandwidth traces published in [42] and network profile 1-14 are from 4G/LTE bandwidth
trace dataset [43] collected by IDLAB [44].

24

0 100 200 300 400 500
0

2

4

6

8

10

Network profile index 1

0 100 200 300 400 500

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Network profile index 2

0 100 200 300 400 500

2

4

6

8

10

12

Network profile index 3

0 100 200 300 400 500

0

2

4

6

8

10

12

Network profile index 4

0 100 200 300 400 500

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Network profile index 5

0 100 200 300 400 500

0

2

4

6

8

10

Network profile index 6

0 100 200 300 400 500

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Network profile index 7

0 100 200 300 400 500

0

2

4

6

8

10

12

Network profile index 8

0 100 200 300 400 500

2

4

6

8

10

Network profile index 9

0 100 200 300 400 500

0

2

4

6

8

10

12

14
Network profile index 10

0 100 200 300 400 500

0

2

4

6

8

10

12

14

16
Network profile index 11

0 100 200 300 400 500

0

2

4

6

8

Network profile index 12

0 100 200 300 400 500

0

2

4

6

8

10

12

Network profile index 13

0 100 200 300 400 500

0

2

4

6

8

10

Network profile index 14

0 100 200 300 400 500

0

2

4

6

8

10

Network profile index 15

Time (s)

Ba
nd

wi
dth

 ca
pa

cit
y (

M
bp

s)

Figure 12: Fifteen network profiles used in experiments of Section 6 and Section 6.4.

25

	Introduction
	Background
	System Model and Problem Formulation
	BOLA360: An Online ABR Algorithm for 360° Videos
	Design and Analysis of BOLA360
	Theoretical Analysis of BOLA360

	Understanding the Behavior of BOLA360
	Experimental Setup
	Experimental Results

	Comparison of BOLA360 with other approaches
	Comparison Algorithms
	Experimental Setup
	Performance Evaluation using Real Network and Head Movement Traces
	Impact of Network Bandwidth on the Performance of Algorithms
	Impact of Head Position Probabilities on the Performance of Algorithms
	Discussion on the Performance of Predictions-based Algorithms

	BOLA360 Enhancements
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion and Future Directions
	More Detail on the Performance of BOLA360
	Proof of Theorem 2
	Generating Probability Distributions for Head Position Probability Values Used in Section 6.4
	Network Profiles Used In Section 6 and 6.4

