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Abstract

In recent years, ridesharing services have revolutionized personal mobility, offering convenient
on-demand transportation anytime. While early proponents of ridesharing suggested that these
services would reduce the overall carbon emissions of the transportation sector, recent studies
reported a type of rebound effect showing substantial carbon emissions of ridesharing platforms,
mainly due to their deadhead miles traveled by a ride-share car between two consecutive rides.
However, reducing deadhead miles’ emissions can incur longer waiting times for riders and starvation
of ride assignments for some drivers. Therefore, any efforts towards reducing the carbon emissions
from ridesharing platforms must consider the impact on the quality of service, e.g., waiting time,
and on the fair and equitable distribution of rides across drivers.

This paper proposes a holistic approach to reduce the carbon emissions of ridesharing plat-
forms while minimizing the degradation in user waiting times and equitable ride assignments across
drivers. Towards this end, we decompose the global carbon reduction problem into two related
sub-problems: carbon- and equity-aware ride assignment and fuel-efficient routing. For the ride
assignment problem, we consider the trade-off between the amount of carbon reduction and the
rider’s waiting time and propose simple yet efficient algorithms to handle the conflicting trade-offs.
For the routing problem, we analyze the impact of fuel-efficient routing in reducing the carbon
footprint, trip duration, and driver efficiency of ridesharing platforms using route data from Google
Maps. Our comprehensive trace-driven experimental results show substantial emissions reduction
of our proposed algorithms with only a graceful increase in riders’ waiting times. Finally, we release
“E2-RideKit”, a toolkit that allows researchers to augment ridesharing datasets with emissions and
equity information, enabling further research on emissions analysis and improvement of ridesharing
platforms.
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1 Introduction

In 2021, the United States accounted for about 17% of global greenhouse gas (GHG) emissions. Of
the 4.6 Billion Metric Tons (BMT) energy-related emissions produced that year, 38% was from the
transportation sector—the highest share among six sectors [1]. Globally, transportation has a similar
impact, contributing 37% of CO2 emissions in 2021 [2]. In particular, urban mobility is estimated to
contribute 40% of CO2 emissions from road transport [3], and given urbanization trends, demand is
projected to more than double by 2050 [4].

The impact of ridesharing services on the transportation market has grown quickly during the past
few years as a sustainable alternative to individual vehicle ownership. As reported by Bloomberg,
the size of ridesharing services was valued at $69.3B in 2022 and is expected to hit $205.8B at the
end of 2030 [5]. These services have revolutionized people’s travel by providing convenient access to
individual or shared vehicles based on their requested pick-up and drop-off locations. Consequently,
ridesharing services, such as Uber, Lyft, Grab, and Didi, have become immensely successful due to
their promise of personal on-demand mobility at any time [6].

Early proponents of ridesharing suggested that these services would reduce reliance on privately-
owned cars, reduce traffic congestion, and reduce carbon emissions, with early studies estimating that
at least five private vehicles would be replaced for each shared car and there would likely be carbon
emission reductions if shared cars were newer vehicles [7]. However, the success of these services has
resulted in an increase in traffic and more congestion on roads—a rebound effect [8]. For example, in
New York City, ridesharing has been shown to constitute more than 50% of road traffic [9, 10]. Another
study has estimated that a typical ridesharing trip is less efficient than a personal car trip, mainly due
to “deadhead” miles traveled by a ride-share vehicle between consecutive hired rides, and that this
generates 47% more CO2 emissions than an equivalent private car ride [11, 12]. The study also showed
that the greater convenience of ridesharing has steered passengers away from public transit options.
Others have reported that the deadhead miles of ridesharing services account for an estimated 36-45%
of their overall distance traveled [13, 14, 15].

The prevalence of deadhead miles and resulting carbon emissions presents new opportunities
to develop emission-aware ride assignment algorithms. However, any carbon-aware optimization of
ridesharing systems must consider its impact on riders and drivers. Prior work shows that existing
ride assignment algorithms may be unfair to drivers from certain demographics based on their gen-
der, age, and race [16, 17, 18]. An emission-aware ride assignment can perpetuate such disparities
by prioritizing drivers with newer, more fuel-efficient vehicles. At the same time, new emission-aware
ride assignment algorithms should not increase rider’s waiting times, which can negatively impact user
satisfaction. Therefore, any efforts towards reducing the carbon emissions from ridesharing platforms
should carefully consider its impact on the quality of service (QoS), e.g., waiting time, and equity, e.g.,
distribution of rides across drivers. While there has been significant work on optimizing various facets
of ridesharing systems [19, 20, 21], the problem of emission-aware ride assignment to green ridesharing
systems has not seen much research attention.

The design space for emission-aware ridesharing optimization is two-fold: (1) ride assignment to
reduce the emissions from the deadhead miles between two trips; (2) the routing strategy of a trip
to optimize emissions instead of other factors such as trip duration or distance. In both problems,
there is a trade-off between emissions, QoS, and equity implications. A ride assignment based on a
single objective of emissions reduction may degrade both the rider and driver ’s QoS. For example,
emission-aware ride assignments may increase the rider’s waiting time by picking a vehicle from a soon-
to-be-completed trip to minimize the deadhead miles. Similarly, during trip routing, the extended time
in picking the most fuel-efficient route instead of the fastest route may degrade user waiting times.
The equity impacts of emission-aware ride assignments are more subtle. The emission-aware ride
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assignment may prefer electric or low-emissions vehicles, which is unfair to drivers with high-emissions
vehicles that tend to belong to low-income communities. Alternatively, the emissions-aware ride
assignment policy may assign trips with inevitably higher deadhead miles to low-emissions vehicles,
which then decreases the efficiency of their service due to a higher deadhead-to-trip ratio.

In this paper, we take a holistic approach to emission-aware ride assignment and trip routing in
ridesharing platforms that considers both the QoS and equity implications. We analyze the perfor-
mance and the trade-offs between their emissions reduction and QoS of riders and drivers using a
real-world ridesharing dataset. In doing so, our paper makes the following contributions:

1. Emission-aware ride assignment: We develop emissions-aware ride assignment algorithms
aimed at minimizing emissions from deadhead miles while maintaining the quality of service (QoS)
for both riders and drivers. We first introduce an offline solution that showcases the substantial
potential for emission reduction through an emission-aware ride assignment policy. Following that,
we introduce an online strategy that allows for a configurable trade-off between emission reductions
and QoS, as measured by rider waiting times.

2. Trip routing: In addition to the ride assignment strategy, the routing policy also plays a significant
role in determining overall carbon emissions. We utilize route data provided by popular navigation
apps such as Google Maps to evaluate the trade-offs among time (the fastest route), distance (the
shortest route), and fuel consumption (the greenest route) in routing following emission-aware ride
assignments.

3. E2-RideKit design: As an independent contribution, we present E2-RideKit, which augments
an arbitrary ridesharing dataset with per-ride carbon emission and per-driver/passenger socioeco-
nomic demographic information. It allows users to configure EV penetration in the dataset, plugin
complementary models, and extend the toolkit to add additional information. As an example use
case, we augment the widely-used RideAustin dataset [22] with carbon emission and equity infor-
mation. In doing so, we outline the challenges we faced in augmenting the dataset and how we
solved them. We hypothesize that E2-RideKit enables researchers to augment ridesharing datasets
with emissions and equity information, enabling new ridesharing analytics and optimizations.

4. Experimental results: Finally, leveraging our toolkit, we conduct a comprehensive evaluation
of our emission-aware ride assignment algorithm and trip routing policies using the RideAustin
dataset to produce multiple key findings. First, we demonstrate that our emission-aware ride
assignment algorithms can decrease emissions from deadhead miles by up to 60% with a mere 4%
increase in waiting time for the riders. Second, replacing just 5% of the current fleet with EVs can
improve deadhead miles emission reduction to 67%. Third, optimizing trip routing for emissions
does not result in favorable tradeoffs; emissions can only be reduced by 4.2% w.r.t. the fastest route
while increasing the trip duration by 3%. Finally, combining emission-aware ride assignment and
trip routing can reduce the fleet-level emissions by 26%, at the expense of a 6.2% increase in trip
duration. The emission reduction can be improved to 29% by replacing only 5% of the current fleet
with EVs.

2 Problem Statement and Challenges

Addressing the general problem of emissions reduction in ridesharing1platforms involves two main
challenges. First, the routing of trips within the platform is important. Routing algorithms can be
tailored not only for the shortest distance or fastest route but also to minimize fuel consumption and

1Our work does not address carpooling or ridesharing of passengers.
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emissions. Second, optimizing ride assignments to reduce emissions is also crucial. This involves effi-
ciently allocating vehicle rides to minimize deadhead mile between the current trip’s drop-off location
and the next pick-up location. Achieving this goal is complex because it requires balancing reducing
emissions and maintaining a high-quality experience for drivers and riders. These two interconnected
components of the problem require careful consideration and trade-offs to ensure a sustainable and
equitable ridesharing ecosystem that simultaneously addresses environmental and service quality con-
cerns.

The fuel-efficient routing problem. Routing algorithms are pivotal in determining the optimal route
during a trip. These algorithms consider various factors, including travel time, distance, and emissions
produced. Variables such as route distance, traffic conditions, and road quality influence travel time
and emissions associated with a particular route. It is important to note that the route with the
lowest emissions may not always align with the shortest distance or the fastest travel time. As a
result, different routing algorithms may yield varying emissions and waiting times results.

The emission-aware ride assignment. The ride assignment strategy also impacts the emissions due to
the deadhead mile of a trip. Since drivers are located at varying distances from passengers, and their
vehicles have distinct unit-distance emissions (emissions produced per unit of distance traveled), the
passenger-to-driver assignment algorithm significantly impacts the overall emissions of the ridesharing
system and the average waiting time for passengers. While some simplistic assignment algorithms may
reduce emissions for individual trips by assigning passengers to drivers with the lowest emissions, this
approach can lead to substantially extended waiting times if the low-emission driver is situated far from
the passenger, potentially degrading the passenger’s satisfaction. Furthermore, assigning passengers
to drivers with the lowest emissions does not inherently result in long-term optimal ride assignments
for the entire ridesharing service. On the other hand, a strategy that prioritizes assigning passengers
to the nearest available drivers aims to minimize waiting times but may inadvertently result in higher
carbon emissions, as it overlooks variations in unit-distance emissions produced by different vehicles
in the fleet.

An illustrative example. In Figure 1, we illustrate the benefits of our system-level emissions-aware
ride assignment over per-ride optimization strategies [23]. Let’s consider a scenario where a driver M1

carries a passenger at time t0, and the passenger will be dropped off at t5. At t3, two passengers request
rides. In a per-ride optimization, the driver M1 is assigned to passenger N2 due to its proximity, and
the passenger N3 is assigned to the driver M2, yielding a total of 61 deadhead miles. However, if we
adopt a system-level view of the ride assignment, the driver M1 would be assigned to the passenger
N3, and driver M2 to passenger N2, even though this is not the best assignment for driver M1. This
results in 40 deadhead miles, significantly reducing the deadhead mile emissions.

Problem formulation. At a high level, the ride-assignment problem is an extended version of the
classic online bipartite matching problem where two sets of disjoint nodes represent riders and drivers.
However, modeling the topology constraints, i.e., determining the set of available drivers and their
corresponding assignment cost for a new ride request, is highly challenging since other rides might
already occupy some drivers, where some of those drivers might be available soon since they are
close to finishing their current ride. A rigorous formulation must carefully capture multiple complex
topology-constrained and time-coupled relationships between riders and drivers. We formulate the
emission-aware one-on-one ride assignments within a ridesharing platform by considering a high-level
abstraction of the topology constraint of the problem in an online setting. We consider a ridesharing
platform comprising M drivers. Over a certain time horizon, N ride requests are generated. The
objective of the ride assignment algorithm is to assign an available empty car to each request such
that it minimizes the long-term emissions from the total distance traveled. This encompasses rides
with passengers and the deadhead mile between dropping off one passenger and picking up the next.
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Figure 1: Ride assignment with the goal of minimizing deadhead miles yields lower such miles than
per-ride optimization (40 vs. 61 units).

We describe a simplified version of the Emission-aware Ride Assignment Problem (ERAP) as follows.

[ERAP] min

N∑
n=1

Mn∑
m=1

(et(n,m) + ed(n,m))xn,m

s.t.,

Mn∑
m=1

xn,m = 1, n ∈ [N ],

vars., xn,m = {0, 1}, n ∈ [N ],m ∈ [Mn],

where et(n,m) are the trip emissions due to the assignment of passenger n to driver m and ed(n,m)
represents the emissions due to the deadhead mile for driver m to pickup passenger n. The routing
algorithms significantly impact these two terms. Also, xn,m is derived from a ride assignment algorithm
and is a binary optimization variable where xn,m = 1 if m is assigned to n; 0, otherwise.

Balancing the maximum potential of emissions reduction and riders’ QoS. In ERAP, parameter Mn

denotes the set of available cars for passenger n that could include both currently available and
soon-to-be-completed cars for ride n. Hence, Mn is a crucial parameter that balances the maximum
potential of emissions reduction and riders’ waiting time (QoS), i.e., the more willingness to increase
the waiting time of ride n, the more cars will be eligible to be included in Mn. In our algorithm in
Section 3.2, we define a threshold parameter ϕ that determines the set of available cars for a new ride,
and by adjusting parameter ϕ, the set of available cars Mn changes; hence, the algorithm could be
tuned to achieve a desired trade-offs between emission reduction and user waiting time.

Lastly, we note that one could implicitly leverage parameter Mn to impose driver’s equity con-
straints. That is, there could be another separate module that records the equity-related metrics for
drivers, e.g., deadhead-to-trip ratio and the number of assigned trips, and then based on the equity
status of each driver, the available cars for the new ride might be determined, e.g., the driver equity
module may exclude the drivers with a large number of previously assigned rides to make the ride
assignment equitable for other available drivers. That said, we emphasize that our current modeling
does not explicitly model the optimization of equity from the drivers’ perspective. Designing equitable
ride assignments for drivers is a significant further direction of our work.
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Algorithm 1: ERA(N , M)

1 Initialize Qi = {}, for i ∈ [1, 2, ...,M ];
2 initial assignment = {Qi| ∀i ∈ [1, 2, ...,M ]};
3 A = {initial assignment};
4 for n ∈ [1, 2, ..., N ] do
5 A′ = {};
6 for a ∈ A do
7 children = Children(a, n);
8 A′ ← A′ ∪ children;

9 emissionmin = Minimum emission of assignments in A′;
10 A ← {a|a ∈ A′, emissionh(a) ≤ emissionmin}

3 Ride Assignment Algorithms

In Section 3.1, we first present an offline ride assignment algorithm, ERA, designed to assign rides
to minimize total emissions near optimally. While ERA is not a practical algorithm, it can show
the maximum potential of emissions reduction with the sole objective of reducing the emissions. In
Section 3.2, we then present TORA, an online emission-aware ride assignment algorithm that balances
total emissions and the average passenger waiting time.

3.1 ERA: An Offline Emission-aware Ride Assignment Algorithm

ERA is an offline algorithm (Algorithm 1) designed to assign a set of N riders to a fleet of M drivers
with the primary objective of minimizing emissions. The algorithm initialization phase (Lines 1-3)
starts with an empty assignment for all M drivers. Subsequently, the algorithm sequentially considers
each passenger n and generates all possible assignments of that passenger to the M available drivers
(Line 7). Importantly, the new assignments do not modify assignments to previous passengers.

The algorithm relies on a heuristic function denoted as emissionh(a) to estimate the emission
associated with a specific assignment and calculates the minimum emissions in assigning all passengers
to the drivers. Specifically, for any assignment n → m in the partial assignment a, the passenger n
is obligatorily assigned to driver m. We conduct an extensive numerical analysis ERA to define a
heuristic function, emissionh(a). It estimates the emissions generated by the system based on the
assignments made in a partial assignment a. The function estimates the emissions by calculating
the deadhead distance for each driver. The deadhead distance is the distance between the drop-off
location of a passenger and the pick-up location of the next passenger assigned to the same driver. In
addition, the algorithm takes into account the lower bound for the deadhead distance of any unassigned
passenger n. This lower bound is calculated by finding the minimum distance required to drive to the
pick-up location of passenger n from the drop-off location of any passenger that arrived before n in
the assignment sequence. By deriving the lower bound on the minimum required deadhead distance
for each unassigned passenger and leveraging the known emission rate per mile for each driver, the
algorithm can effectively estimate the minimum emission for each ride. The total estimated emission
is calculated as the sum of the emissions associated with the assigned passengers and the minimum
emissions of the unassigned passengers, all for the partial assignment a.

Finally, the algorithm keeps the assignments with the lowest estimated emission and starts branch-
ing from those (Lines 10-11). In this algorithm, Children(assignmentn−1, n) returns a set of possible
assignments of passenger index n to drivers without changing any previously assigned passengers,
assignmentn−1, (Line 7). In Figure 2, we present emissions from the deadhead miles and passen-
ger waiting times for the current assignments in the dataset and the new assignments based on our
emission-aware offline algorithm.
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Figure 2: Opportunity analysis: Comparison of emissions from deadhead miles and waiting time for
the default ride assignment and our offline emission-aware ride assignment.

We note that the computational complexity of the ERA algorithm is substantial, rendering it im-
practical to seek near-optimal solutions for datasets with hundred thousands of trips. Consequently, for
this preliminary feasibility study, we have limited our experimentation to a curated dataset comprising
142 samples. We randomly sampled 142 trips, completed by 14 unique drivers, from the RideAustin
dataset [22] (detailed on Section 6.1) on December 2, 2016. The left y-axis presents the total carbon
emissions, measured in grams of carbon dioxide equivalent (g.CO2eq), for the deadhead miles of all the
trips2. The y-axes on the right show the waiting time (seconds), measured as the time period between
a passenger posting the request and the driver picking up at different scales. Our results demonstrate
that our proposed ERA algorithm, albeit offline with complete knowledge of future rides, can reduce
the deadhead miles emissions by 48.7% (from 626gCO2eq to 321gCO2eq). Importantly, the average
waiting across all trips also decreased by 8.5% (from 330s to 302s) as ERA reduced the deadhead miles.
Still, the longest waiting time increased by 2.94× to almost 94 minutes from the 32 minutes observed
for the default ride assignment.

The above initial results show the potential of carbon emissions reduction by changing the assign-
ment objective. However, ERA is an offline algorithm; hence, it is not practically a relevant choice.
Hence, in what follows, we present TORA as an online and practical algorithm for emission-aware ride
assignment.

3.2 TORA: An Online Threshold-based Ride Assignment Algorithm

TORA is an online ride-assignment algorithm that controls the trade-off between waiting time and
vehicle carbon emissions. To minimize waiting time for the passenger n, TORA first finds the closest
available driver to the passenger and then compares the distance and deadhead emission produced
by other available drivers with the closest driver. TORA calculates the Emission-to-Distance (E2D)
ratio for every driver and selects the appropriate driver for the passenger based on E2D values. More
specifically, E2D is defined as the ratio between the difference of the deadhead emission of a driver and
the deadhead emission of the closest driver over the difference of the distance of the passenger to the
two drivers, i.e.,

E2D(m, c) :=
ed(n, c)− ed(n,m)

distance(m)− distance(c)
, (1)

where distance(c), and distance(m) show the distance of passenger n to the closest driver c and driver
m.

2This measurement is derived from multiplying the miles traveled by the fuel efficiency of the vehicle, denoted in
grams of CO2 emitted per kilometer (gCO2/km). See the implementation section for additional details.

6



Algorithm 2: TORA(n, ϕ)

1 c← closest available driver to n;
2 m← argmaxm′ E2D(m′, c);
3 if ϕE0 < E2D(m, c) then
4 return m;

5 else
6 return c;

The pseudocode for TORA is outlined in Algorithm 2. It leverages a parameter, ϕ, to balance
the trade-off between reducing passenger waiting time and minimizing vehicle deadhead emissions.
Initially, TORA identifies the closest available driver and computes E2D value for other available drivers
(Lines 1-2). Next, it picks a driver with the highest E2D ratio such that E2D > ϕ× E0, where E0 are
the emissions for a baseline vehicle over a unit distance trip. If such a driver exists, TORA selects and
returns it (Lines 6-7). Otherwise, it defaults to assigning the closest available driver.

The underlying concept of this algorithm is straightforward: it replaces the nearest driver with a
more distant one if the latter emits ϕE0 fewer emissions per additional unit distance traveled. The
lower values of ϕ prioritize drivers with lower emissions, whereas higher values prioritize selecting the
closest driver, potentially increasing emissions. To better understand how different values of ϕ impact
the passenger’s waiting time, we can calculate the upper bound on the distance of driver m to the
passenger when TORA is willing to replace the closest driver c by m. From the definition of E2D(m, c)
in Equation 1, TORA replaces closest driver c by driver m if

ϕE0 <
ec · distance(c)− em · distance(m)

distance(m)− distance(c)
, (2)

where ec and em denote the unit-distance emission for the driver c and m. By rearranging Eq. (2),
TORA replace driver c with driver m if

distance(m)

distance(c)
<

ec/Eo + ϕ

em/E0 + ϕ
, (3)

where the ratio of distance(m)/distance(c) approximates the ratio of waiting time for the passenger
with driver m over driver c. Eq. (3) shows that TORA limits the distance of the lower emission driver
based on its and closest driver’s unit-distance emissions.

4 Route Choice Trade-Offs

In this section, we study the impact of different route options on the total distance, trip duration, and
emission produced during the trip. We consider the shortest route, fastest route, and most fuel-efficient
route as the three possible choices of driver to travel from pick-up to drop-off location of passenger.
We collected the data for the three route options — distance, duration, and fuel consumption — for
44,794 trips using the Google Maps API [24]. In our analysis, we categorize trips into short- (< 1
mile), medium- (1–10 miles), and long-distance (> 10 miles) trips (based on the length of shortest
route) to emphasize the impact of different routing options on different trips. Our three route options
also give us three metrics for our analysis: distance traveled, time taken, and emissions produced. We
choose one route option as a baseline (optimize one metric) and evaluate how worse off the other two
routes are based on the baseline metric for all trip categories.

In Figure 3(a), we examine the percentage increase in distance for the fastest and fuel-efficient
route options when compared to the baseline shortest distance route (y-axis) for the three trip cate-
gories (x-axis). The fastest route takes a longer route, probably to avoid traffic congestion, by up to
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(a) Impact on Trip Distance (b) Impact on Trip Emissions (c) Impact on Trip Duration

Figure 3: Average increase in distance (a), emission (b), and duration (c) for different routing algo-
rithms to the optimal routes for short, medium, and long-distance trips for three trip categories in our
analysis.

7.5%, depending on the length of the trip. The fuel-efficient route needs to balance the savings from
traveling the shortest distance and the cost of idling in a traffic jam; it drives longer highly judiciously.
Figure 3(b) shows the increase in trip emissions for the shortest distance and fastest routes. The
increase in emissions is smaller than the increase in distance we observed in Fig. 3(b). Also, the actual
magnitude of increase even for the fastest trip is around 4%. The differences may further diminish
in practice, especially in cities where traffic patterns change quickly and unexpectedly. Finally, in
Figure 3(c) we evaluate the time cost of the shortest distance and fuel-efficient route options. As we
observed before, shortest distance routes are most likely congested, and choosing them would cost up
to 6% more time than the shortest duration route. Since the fuel-efficient route option travels longer
distances but avoids congestion, its increase in time is smaller.

Our analysis showed that the choice of route had varying impacts on trip duration, distance, and
emissions, with the shortest, fastest, and fuel-efficient routes exhibiting different trade-offs.

Key takeaways. Our analysis yields a few interesting and surprising insights. It shows that choosing
the fuel-efficient route may not always yield huge fuel savings. However, since the distance and time
increase for the fuel-efficient trip are minute, <1% and <2.5%, respectively, the small savings do not
come at a huge cost. Also, the results are subject to local road networks, traffic conditions, and driver
habits.

5 E2-RideKit Toolkit

Our work on developing emission-aware ride assignment and routing algorithms requires ridesharing
datasets to include carbon emission information for the deadhead miles and individual trips, and eq-
uity information on the drivers and riders. However, no existing ridesharing datasets contain such
information. Augmenting the existing datasets with emission and equity information requires solv-
ing multiple challenges. In this section, we present the design and implementation E2-RideKit 3 for
augmenting ridesharing datasets as an independent contribution. To make the toolkit complete and
independently useful, we implement several additional functionalities not used directly for our algo-
rithmic work in this paper. However, they are of independent interest for emissions research in the
ridesharing ecosystems.

3https://github.com/Mahsahebdel/e2 ridekit
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5.1 E2-RideKit Design

The design of E2-RideKit needs to solve three key challenges: (1) building vehicle- and congestion-
aware emission models for internal combustion engine (ICE) powered vehicles, (2) modeling congestion-
aware discharging and location-aware charging models for Electric Vehicles (EVs), and (3) defining,
quantifying, and adding missing information on equity-related metrics. We solve these challenges as
a part of our design, which we describe next.

1. ARCHITECTURE. The high-level architecture of E2-RideKit consists of three major mod-
ules, as shown in Figure 4. The three major modules are (i) Ride Enhancer module, (ii) Emission
Estimator module, and (iii) Equity Embedder module.

Ride Enhancer. The goal of this module is to augment the per-ride/trip information from an existing
dataset with missing information, if any. For example, a dataset may only provide the pickup and
drop-off coordinates without sharing information on the actual route taken by the driver. Since we
need to estimate per-ride emissions, which depend on the route the driver takes, Ride Enhancer

module can leverage a navigation API to generate trajectories. Similarly, the congestion model inside
the Ride Enhancer module is responsible for estimating congestion during the trip since it is one of
the key factors that affect the fuel efficiency of vehicles, which impacts the carbon emissions for a
given trip. Note that Ride Enhancer module operates on all rides and does not differentiate between
rides from an ICE-powered vehicle and an EV.

Emission Estimator. This module is the heart of the E2-RideKit as it estimates the carbon and
other GHG emissions for various aspects of each ride. For example, it will estimate the emissions
during the actual trip with the passenger and emissions from deadhead miles that the driver had
to undertake to pick up a new customer. Since the car make/models, fuel types, and efficiencies of
ICE-powered vehicles and EVs are significantly different, we use separate modules for estimating their
emissions. Based on the vehicle type, EV or ICE-powered, we use data from either carbon information
services such as electricityMaps [25] and Watttime [26] or existing vehicle emissions datasets [27].

Equity Embedder. An equally important and the most challenging module is the Equity Embedder

module that embeds socioeconomic and demographic information for the drivers and the riders. Due
to privacy concerns, dataset collectors and maintainers do not release information that can reveal
the identity of the riders or passengers. As a result, this information needs to be estimated at a
coarse granularity using publicly available information using resources such as US Census Bureau [28].
Specifically, we use the Geocode API [29] to collect demographic data such as race, population, and
median income. The data is provided by the U.S. Census Bureau and is made available by census block,
i.e., the smallest geographical unit for which the U.S. Census Bureau collects and provides statistical
data. In some cases, the data may not be for the same year as the ride-sharing dataset. For example,
for many locations in the US, 2020 is the most recent year with available census data [30]. However,
this should not be a significant issue as the demographics of cities, or even blocks, only change over the
course of many years. Using per-ride information, our module optionally estimates coarse information
on which segment of the city the driver or rider lives. This information can be gleaned from past
datasets for the regular drivers and riders using methods such as K-means clustering [31]. We release
this module with a disclaimer about the potential inaccuracies in the embedded information.

2. WORKFLOW. We next describe the workflow of E2-RideKit when using it to augment an
existing ridesharing dataset. We first split the input dataset into two segments that contain information
on individual rides and the other segment containing information on all the drivers and riders if
available.

If the dataset does not provide trajectory information, we leverage navigation APIs with generative
modeling to estimate trajectories for each ride, i.e., the route between pickup location and destination.
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This trajectory information is needed to estimate the trip emissions based on the vehicle used, route
taken, and distance traveled. We next adjust the trip emissions based on the estimated travel time
index (TTI), which compares the travel time of a given trip with the typical time for the same trip
and represents a good proxy for traffic congestion. By leveraging the appropriate emission module,
this step handles both ICE-powered vehicles and EVs.

To solve the second challenge, when considering discharging, we will leverage the same approach as
the first challenge. To model the charging patterns and constraints, we will leverage publicly-available
information on the charging station locations [32], the ratings of the available chargers [32], and the
carbon intensity of electricity supply using services such as electricityMaps [25] and Watttime [26].
To solve the final challenge, we will create a meta-dataset that provides the distributions of equity-
related metrics augmented with additional information on socio-economic factors from U.S. Census
Bureau [28]. Table 1 lists the additional per-trip and meta fields that E2-RideKit add to our example
dataset.

5.2 E2-RideKit Implementation

In this section, we describe the implementation of E2-RideKit and the models and datasets we use
for our case study, as explained in the following. We combine multiple additional datasets as a part
of our implementation and describe them next.

1. Car emissions dataset. To model emissions from the ICE-powered vehicles in the dataset, we use
the Canada Car Emissions dataset [27]. This extensive and reliable resource provides a comprehensive
overview of CO2 emissions data for various vehicles. This dataset covers a period of 7 years and
is sourced from the official open data website of the Canadian government. It consists of detailed
information on different aspects and characteristics of 26,075 unique vehicles. The dataset primarily
focuses on essential factors such as vehicle’s make, model, year, and carbon emissions, which are
fundamental in understanding CO2 emissions. However, it goes beyond these key attributes and
includes valuable information such as fuel type, engine size, transmission type, and other relevant
features. Easy access to these additional details through the toolkit will enable researchers and analysts
to gain deeper insights into the relationship between car attributes and carbon emissions, facilitating
a more comprehensive dataset analysis.

2. Carbon emissions dataset. ElectricityMaps [25] and Watttime [26] are valuable services that provide
essential information regarding the carbon intensity of electricity supply across different locations.
This information is presented as average and marginal hourly values, which can vary depending on
the specific location and time. The availability of this data is particularly beneficial for modeling the
carbon intensity of electricity supply during the charging of EVs. To accurately model the charging
patterns and constraints for EVs, publicly available data on charging station locations and charger
ratings are utilized. This data aids in estimating the charging patterns of EVs and determining the
time required for a vehicle to be fully charged. However, it is not always feasible to determine the exact
time at which an EV is charged. In such cases, a proxy approach is employed, where the daily average
carbon intensity value of the electricity supply at the location where the vehicle is charged is utilized
to estimate the charging time. By adopting this approach, an estimation of the carbon intensity of the
electricity supply at the time of charging is derived and incorporated into the analysis. By leveraging
the information from electricityMaps, WattTime, and the data on charging station locations and
charger ratings, researchers and analysts can enhance their analysis of the environmental impact of
EVs and their charging patterns. This integration allows for a holistic understanding of the relationship
between EV charging, the carbon intensity of electricity, and its implications for sustainability and
environmental considerations.

3. Traffic congestion model. The traffic congestion model is a demand modification and traffic simu-
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Figure 4: The high-level architecture, various components, and workflow of E2-RideKit.

Table 1: Additional Fields Added to the RideAustin Dataset.

Trip related fields fuel efficiency emissions (deadhead & trip) congestion index
EV (yes/no) demographics (rider & driver)

Meta fields EV trajectories electricity carbon intensity charger location
charger type charging/discharging model

lation process. The model aims to estimate changes in travel demand and traffic patterns. We next
detail the demand modification and traffic simulation processes.

In the demand modification process, we adjust the Origin-Destination (O-D) matrix to reflect
changes in travel demand resulting from various factors. This requires data-derived inputs, such as trip
proportions associated with specific Traffic Analysis Zones (TAZ) and the proportion of dedicated tours
for specific purposes. Users can also set additional simulation parameters, like the penetration and
substitution rates. To incorporate changes in travel patterns, we use a Monte Carlo simulation, which
accounts for uncertainties in determining trip categories and subsequent destinations by generating
multiple potential scenarios. After identifying the affected trips, the OD matrix is modified to reflect
the changes introduced in the simulation.

The traffic simulation process involves using the Vehicle Hours Traveled (VHT) metric to under-
stand and quantify the impact of transportation activities on congestion. VHT measures the total
travel time of vehicles on the road network during a specific period, considering both the number of
vehicles and the duration of their trips. To calculate VHT, we use Static Traffic Assignment, which
assigns trips from an Origin-Destination (OD) matrix to the transportation network, considering travel
demand, road capacities, and traffic conditions. The goal is to distribute the trips across the network
in a way that reflects realistic travel patterns and estimates travel times for the assigned trips. The
resulting network data provides valuable information on updated link speeds, travel times, and vehicle
volumes, enabling the calculation of VHT by summing up the travel times on each link. By compar-
ing VHT values and analyzing different scenarios, researchers can assess the impact of transportation
activities on congestion, aiding in the understanding of traffic dynamics, evaluation of interventions,
and development of strategies to mitigate congestion-related issues.

6 Experimental Evaluation

This section provides a comprehensive experimental study to evaluate the deadhead, total emission,
and waiting time of a ridesharing platform under ride assignment of TORA with different ϕ values and
different routing algorithms explained in Section 4. The key questions for the evaluations and our
findings are outlined below.
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Q1 How does TORA impact the deadhead emissions and waiting times when the routing algorithm remains
unchanged? We find that TORA can improve the deadhead emission significantly with a cost of
slightly increasing the waiting time (Key takeaway 1).

Q2 How does TORA affect the equity among drivers with varying vehicle emissions? Our analysis re-
veals that reduction in emissions requires sacrificing equity by assigning more rides to low-emission
vehicles (Key takeaway 2).

Q3 How do the TORA and routing algorithms compare regarding their impact on the emission of rideshar-
ing systems? We find that the impact of the ride assignment algorithm on the emission and waiting
time of the ridesharing system is substantially more than the impact of routing algorithms (Key
takeaway 3).

6.1 Experimental Setup

We outline the characteristics of the ridesharing dataset we use, various parameters that we vary in
our experiments, and the metrics we use to evaluate the efficacy of our approach in reducing emissions
and ensuring equity.

Ridesharing dataset. RideAustin, a non-profit ridesharing company based in Austin, Texas, has
released a dataset encompassing around 1.5 million trips spanning a 10-month period across 2016 and
2017 [22]. During this period, no other major ridesharing platforms like Uber or Lyft operated in
Austin. The dataset contains comprehensive trip-specific information, including the trip’s start and
end times, geographical coordinates for both pick-up and drop-off locations, the vehicle’s make and
model, distance covered before, during, and after each trip, and unique identification numbers for the
driver and passenger.

In our experiments, we use RideAustin dataset consisting of trips between December 1, 2016,
and December 10, 2016. This subset comprises 44,794 ridesharing trips conducted by 1,406 drivers.
We augment this dataset with emissions information using E2-RideKit, and the additional dataset
explained in Section 5. We categorized the vehicles emitting less than 135 g.CO2eq/km as low-
emission vehicles (LEVs), and created three more variants of the dataset by randomly selecting 5%,
10%, and 20% of the vehicles which are not categorized as a low-emission and converting them into
electric vehicles (EVs), yielding three addional datasets with 10%, 15%, and 25% low-emission vehicles.
During our experiments, we set the unit distance emission equivalent of EVs to be 63.35 g.CO2eq/km4.

Baseline strategies and parameter ranges. For our ride assignment algorithms, we use two
baseline ride assignment strategies: 1) default assignment as presented in the RideAustin dataset
and 2) shortest distance assignment that assigns the closest driver to the passenger. The second
assignment strategy is emulated as an extreme case of TORA when ϕ approaches infinity. We use three
variants of TORA with ϕ values of 0.1 (representing an emissions-prioritized assignment), 1 (roughly
representing emissions- and -waiting-time-aware assignment), and 7.5 (representing a waiting-time-
prioritized assignment) for our ride assignment strategies. For routing, we used three routing strategies:
the shortest, the fastest, and the fuel-efficient, as explained in Section 4.

For our experimental parameters, we vary the values of ϕ between 0.001 and 18. We set the value
of E0 to 63.35 g.CO2eq/km, which is equal to the unit-distance carbon emission for an EV. It is worth
noting that scaling up the value of E0 is equivalent to scaling down the value of ϕ. For example, the
ride assignment of TORA with ϕ = 10 and E0 = 63.35g.CO2eq/km equals to the ride assignment of
TORA with ϕ = 5 and E0 = 126.7g.CO2eq/km.

4We used the Tesla Model Y as a prototype EV, which has an energy efficiency rating of 26 kWh/100mi. We used the
average carbon intensity value for Austin, Texas, which is 408 g.CO2eq/kWh to compute the unit distance emissions.
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(a) Default Assignment (b) Shortest Distance

Figure 5: Percentage reduction in deadhead miles emissions on y-axis compared to the (a) default
assignment in the RideAustin dataset and (b) shortest distance driver assignment, as a function of ϕ
on the x-axis for different LEV fractions. Lower values of ϕ generally yield higher reduction.

Performance and equity metrics. We assess ride assignment strategies using three performance
metrics: passenger waiting time, deadhead emissions, and overall ridesharing emissions.

To analyze the equity implications of the ride assignments algorithms, we leverage the parameter
ϕ. Besides the previous LEVs, we introduce another category of high-emission vehicles (HEVs) with
lower than 11.7 liters per 100km (20mpg). We report the fraction of trips assigned and the average
deadhead-to-trip distance ratio for the two categories. For an equitable outcome, the values for both
metrics should be similar across vehicle categories.

6.2 Impact on Emissions and Waiting Times

In this section, we present the outcomes of our experiments, which shed light on the intricate interplay
of ride assignment algorithms, routing strategies, and various dataset configurations. These results
offer valuable insights into the performance trade-offs inherent in ridesharing platforms. We report
our results by varying the threshold values (ϕ) for different datasets, including the original vehicle
dataset and synthetically generated datasets with the injection of 10%, 15%, and 25% low-emission
vehicles (LEVs). The objective is to investigate the impact of threshold parameter ϕ on two pivotal
factors: the reductions in deadhead emissions (in Figure 5) and the increase in waiting times of the
riders (in Figure 6).

The results in Figure 5 show that smaller values of threshold value ϕ lead to greater improvements
in deadhead emissions. Additionally, at a fixed threshold value, a higher percentage of low-emission
vehicles results in comparatively greater improvements in deadhead emissions. Regarding waiting
times, as shown in Figure 6, a smaller threshold value increases the relative waiting time for both the
default assignment and the shortest distance assignment strategies. Also, as ϕ increases, the relative
increase in waiting time decreases. We note that with higher values of ϕ, our results demonstrate
a negative increase in waiting time, i.e., a reduction in waiting time, compared to the default ride
assignment in the RideAustin dataset. This happens because the default assignment does not always
assign the closest drive to the passenger, and there is an opportunity to reduce waiting time without
increasing emissions.

Key takeaway 1. There is a trade-off between reducing the average deadhead emission and reducing
the average passenger’s waiting time under the ride assignment of TORA, e.g., while smaller threshold
values substantially reduce the emissions, it comes at the expense of increased waiting time of riders.
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(a) Default Assignment (b) Shortest Distance

Figure 6: Percentage increase in waiting time on the y-axis compared to the (a) default assignment
in the RideAustin dataset and (b) shortest distance driver assignment, as a function of ϕ on the x-axis
for different LEV fractions. Higher values of ϕ generally yield lower waiting time.

6.3 Equity Implications

Depending on how we look at the problem and who we ask, the definition of equity can significantly
change. In our context, we define it as an equitable distribution of rides across all vehicles. Since
emission-aware ride assignment strategies favor high-efficiency vehicles, they can starve drivers with
low efficiency, which typically belong to low-income drivers. As a result, there is a tradeoff between
reduction in emissions and equity. In this section, we navigate the tradeoff using various values of
ϕ. Note that any other definition of equity, such as the waiting time experienced by riders from low-
income communities vs. affluent neighborhoods, can be explored using the information augmented
into the dataset by E2-RideKit.

As illustrated in Figure 7, adjusting the threshold value results in a trade-off: an increase in the
threshold leads to a decrease in the percentage of trips assigned to LEVs, while the percentage of rides
assigned to HEVs increases. This implies that a higher threshold favors HEV rides, a trend consistent
across datasets with varying LEV percentages. Intriguingly, our results also demonstrate that a higher
percentage of LEVs within a dataset corresponds to a greater percentage of trips completed by LEVs,
irrespective of the threshold value. Notably, the original dataset, across a range of threshold values
from 0.001 to 18, assigned between 7.6% to 16.6% of rides to LEVs. These percentages shifted to
20.7% to 66.8%, 25.5% to 56.2%, and 39.4% to 65.8% for datasets containing 10%, 15%, and 25%
LEVs, respectively. This underscores the pivotal role of a higher proportion of LEVs in achieving
environmentally friendly ridesharing outcomes within defined criteria.

A distinct facet of our investigation involved analyzing the ratio between deadhead and total trip
distance, known as the deadhead-to-trip ratio. Figure 8 showcases the results as the threshold values
vary for LEVs and HEVs. As expected, an increase in the threshold value is associated with a decrease
in the deadhead-to-trip ratio, consistent across scenarios with a fixed percentage of LEVs.

Interestingly, our results demonstrate that raising the threshold for a fixed percentage of LEVs
is linked to an increased deadhead-to-trip ratio for HEVs. Additionally, for a fixed threshold value,
a higher percentage of LEVs results in a lower deadhead-to-trip ratio, reflecting improved efficiency.
These observations emphasize the intricate relationship between ride assignment parameters and the
efficiency of trip assignments in diverse environmental contexts. Results show that the deadhead-to-
trip ratio for LEVs varies between 31.8% to 35.7% for original vehicles when threshold varies between
0.001 to 18 while these ranges for datasets with 10%, 15%, and 25% LEVs were 32.8% to 37.0%, 32.4%
to 34.0%, and 31.9% to 34% respectively.
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(a) LEVs (b) HEVs
Figure 7: Fraction of rides assigned on y-axis to (a) LEVs and (b) HEVs, as a function of ϕ on the
x-axis for different LEV fractions. At lower ϕ values, TORA assigns more rides to LEVs.

(a) LEVs (b) HEVs

Figure 8: Average deadhead-to-trip distance ratio on y-axis for (a) LEVs and (b) HEVs, as a function
of ϕ on the x-axis for different LEV fractions. At higher ϕ values, the deadhead-to-distance ratio for
LEVs decreases but increases for HEVs.
Key Takeaway 2. Under the ride assignment of TORA, reduction in deadhead emissions requires
sacrificing equity among drivers. In this case, a greater fraction of passengers get assigned to LEVs,
and their deadhead miles would be longer.

6.4 Ride Assignment and Routing Comparison

Finally, we examine the impact of ride assignments and routing options on total emissions and waiting
times, considering datasets with varying percentages of LEVs. By leveraging data from the Google
Maps API, including travel times for different route options, the shortest (S), the fastest (F), and the
fuel-efficient (E), explained in Section 4, we evaluated the performance of TORA with three different
values of ϕ : 0.1, 1, and 7.5. Our results, illustrated in Figure 9, indicate when we increase the
threshold value, we observe a decrease in the percentage increase in waiting time. Higher thresholds
are associated with a reduced percentage increase in waiting times and a corresponding decrease in
improvements in deadhead emissions. Conversely, lowering the threshold value amplifies waiting time
increases and enhances the reduction of deadhead emissions. These findings illuminate the intricate
dynamics between ride assignment and routing strategies and their consequential effects on emissions
and waiting times within ridesharing systems. In addition, results reveal that the impact of ride
assignment (different threshold values) on the total emission and waiting times is substantially greater
than that of routing algorithms. Note with original vehicles, changing the threshold value from 7.5
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(a) Original Vehicles (b) 10% LEVs (c) 15% LEVs (d) 25% LEVs

Figure 9: Percentage of improvement in total emission as a function of percentage of increase in
waiting time assignment for TORA using three different route options (Shortest (S), Fastest (F), and
Fuel Efficient (E)) and varying ϕ values: 0.1, 1, and 7.5.

to 0.1 can improve the total emission up to 3.5%, and increase the waiting time up to 71.2%. In
contrast, for a fixed ride assignment algorithm, the maximum impact of the routing algorithm on the
improvement of emission and increase in waiting time is 2.6%, and 10.1%.

Key Takeaway 3. The impact of ride assignment algorithms on the emission and waiting time of
ride sharing service is significantly more than the impact of routing algorithms.

7 Related Work

Prior work on improving ride-sharing services has mainly focused on investigating the factors affecting
passenger demand and scaling drivers’ availability to match demand by leveraging either theoretical
approaches or empirical and ML-based approaches.

Theoretical approaches. Feng et al. [33] present a novel two-stage stochastic matching model for
ride-hailing platforms, addressing uncertainty in rider and driver availability. Li et al. [34] study the
strategies taken by taxi drivers for finding passengers from a large-scale taxi GPS dataset. Vazifeh
et al. [35] propose an optimization-based approach to minimize the fleet size in on-demand urban
mobility services. Zha et al. [36] analyze the ride-sourcing market by leveraging a model that captures
the matchings between customers and drivers through a matching function. Bai et al. [37] and Feng
et al. [38] propose a model for an on-demand service platform to estimate the passenger’s queuing
time or their matching time. Abkarian et al. [39] present a model that aims to balance the trade-
off between waiting times for reservation-based and on-demand users while minimizing the overall
deadhead mileage driven by the vehicles in the fleet. Other studies analyze ride-sharing for deadhead-
ing, cost, energy consumption, and environmental impact through modeling, simulations, and data
analytics [40, 41, 42].

Empirical and ML-based approaches. Moreira-Matias et al. [43] devise a method to predict
the short-term distribution of taxi passengers using streaming data from taxis operating in Porto,
Portugal. Iacobucci et al. [44] investigate the potential demand for Shared Autonomous Vehicles
(SAVs) or robotaxis using a scalable simulation framework. This study explores the impact of SAVs
on travel behavior, considering factors such as fare, waiting times, and real-time demand. Jungel et
al. [45] focus on the development of online control algorithms for autonomous mobility-on-demand
systems. They propose a hybrid combinatorial optimization enriched machine learning pipeline that
learns online dispatching and rebalancing policies from optimal full-information solutions.

Lavieri et al. [46] use an Austin-based ride-sharing dataset to present two statistical models: (i) a
spatially lagged multivariate count model to estimate the number of trips generated in a specific zone
during weekdays and weekends and (ii) fractional split model to identify the key features of zones where
a majority of ride-sharing trips start. In another study, Liu et al. [47] analyze the temporal and spatial
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patterns of riders’ requests and the ride services they choose. They use Random Forests to predict
the travel demand of these ride-sharing services. Ke et al. [48] propose a novel spatio-temporal deep
learning approach that uses a convolutional neural network (CNN) to model the spatial distribution
of demand and a long short-term memory (LSTM) network to model the temporal patterns in ride
demand. Other studies have also used LSTM networks to predict demand behaviors across both
spatial and temporal dimensions [49, 50, 51]. While these studies focus on improving the performance
of ride-sharing services, they do not explicitly target reducing deadhead miles. To the best of our
knowledge, the most relevant work to our proposal is done by Kontou et al. [23]. Authors show up to
82% reduction in trip-level deadhead miles by leveraging hour-ahead trip demand predictions and a
heuristic approach to driver assignment. However, their focus on reducing trip-level deadhead miles
may not always lead to reducing system-wide deadhead miles and emissions that, in addition to the
number of miles, depend on the fuel efficiency of vehicles and traffic conditions. Furthermore, they do
not consider equity metrics from the rider’s or driver’s perspective.

Our paper is the first to take a holistic approach toward designing emission-aware ride assignment
optimizations that explicitly target reducing emissions from deadhead miles, embed equity consider-
ations into the ride assignment process, and consider electric and low-emission vehicles as a part of
ride-sharing fleets. In addition, our solution approach is a data-driven algorithmic design that relies
on a straightforward greedy algorithm.

Lastly, we note that there is extensive literature on optimizing carbon emissions and energy con-
sumption for vehicle routing. The existing emission-optimized routing algorithms, e.g., [52, 53, 54],
mainly model the problem as extended variants of the classic traveling salesman problem under dif-
ferent settings, e.g., joint electric vehicle charging and routing [55, 56, 57, 58], joint routing and speed
optimization [59, 52], and environmental impacts of the routing decisions [60, 61]. In this work, how-
ever, we used off-the-shelf routing algorithms from Google Map API. An interesting future direction
of our work is to combine the above routing algorithms with the ride assignment policies presented in
this paper.

8 Concluding Remarks

In this paper, we presented equity- and emission-aware ride assignment and routing approaches to re-
duce the overall emissions of the ridesharing platform. We then presented E2-RideKit as a toolkit that
combines multiple datasets needed for the performance evaluation of our algorithms. Future research
should focus on explicitly integrating equity considerations into the ride assignment optimization prob-
lem. This involves developing models that account for various dimensions of equity, such as fairness in
service access and drivers’ treatment, to align the optimization process with broader social goals. An-
other critical area for further exploration is a thorough analysis of the simple online algorithm used in
this study. Investigating its robustness, scalability, and sensitivity to different conditions will provide
valuable insights, enabling potential refinements and improvements to enhance its performance under
various scenarios. Additionally, beyond carbon minimization, future research should extend the eval-
uation framework to include a comprehensive assessment of the impact on drivers’ income. Balancing
environmental objectives with socioeconomic considerations is essential to ensure that emission reduc-
tion efforts do not compromise the livelihoods of those providing ride-sharing services. Finally, we
will publicly release E2-RideKit as an open-source toolkit to facilitate research in emissions analysis
of ridesharing ecosystems.
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[57] Alejandro Montoya, Christelle Guéret, Jorge E Mendoza, and Juan G Villegas. The electric vehicle
routing problem with nonlinear charging function. Transportation Research Part B: Methodolog-
ical, 103:87–110, 2017.

[58] Michael Schneider, Andreas Stenger, and Dominik Goeke. The electric vehicle-routing problem
with time windows and recharging stations. Transportation science, 48(4):500–520, 2014.

[59] Junyan Su, Qiulin Lin, and Minghua Chen. Follow the sun and go with the wind: Carbon
footprint optimized timely e-truck transportation. In Proceedings of the 14th ACM International
Conference on Future Energy Systems, pages 159–171, 2023.

[60] Sevgi Erdoğan and Elise Miller-Hooks. A green vehicle routing problem. Transportation research
part E: logistics and transportation review, 48(1):100–114, 2012.
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